scholarly journals Effect of rehydration on texture properties of Mexican plum (Spondias purpurea L.) dehydrated by tray drying and freeze drying

Author(s):  
Paulina Guillen-Velazquez ◽  
Cinthia Muñoz-López ◽  
Denis Cantu-Lozano ◽  
Guadalupe Luna-Solano

Mexican plum (Spondias purpurea L.) is a fruit with high nutritional content. Freeze and tray drying increases its shelf life, however non-reversible changes may ocurr. Properties as rehydration capacity and texture are considered as a measure of the injury to the material caused by drying. In this sense, the objective of this research was to evaluate the texture profile of dehydrated plum during rehydration and compare it with properties of raw plum. Freeze drying provided a product with less tissue damage reflected in the high rehydration capacity and texture characteristics very close to original unlike those dehydrated by hot air. Keywords: Mexican plum; rehydration; texture profile analysis.

Author(s):  
N. Jonkers ◽  
J. A. W. van Dommelen ◽  
M. G. D. Geers

AbstractThe texture profile analysis test is an imitative test to determine texture properties of food, which quantify the consumer’s perception of eating food. The instrumental texture parameters obtained from this test depend on the specimen size and the nonstandardized test conditions. To overcome this problem, texture properties are here related to intrinsic mechanical properties, which are independent of the test conditions. Two types of materials are used to investigate the effect of viscoelasticity, plasticity and damage on the texture parameters for varying test conditions. Analytical relations between mechanical properties, test conditions, and the instrumental hardness, springiness, cohesiveness, and adhesiveness are determined. The hardness is obtained from the stiffness of the material, which is potentially rate-dependent, and the yield stress of a material in case of plasticity. The springiness is determined by the recoverable or irrecoverable strain in the material, which results from the mechanical properties in combination with the test conditions. Cohesiveness and springiness are found to be strongly related, unless structural damage is present in the material. Adhesiveness is only an indirect measure of the adhesion between the material and compression plate and depends on the test conditions and stiffness of the material. Finite element simulations reveal a decrease of hardness in case of a nonflat top surface, indicating the importance of geometrical effects.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 976
Author(s):  
Ima Wijayanti ◽  
Avtar Singh ◽  
Soottawat Benjakul ◽  
Pornsatit Sookchoo

The effects of Asian sea bass (Lates calcarifer) bio-calcium (ASBB) at different levels (0, 2, 4, 6, 8, and 10%) (w/w) on properties of threadfin bream (Nemipterus sp.) surimi gel were investigated. ASBB addition increased breaking force and deformation, while reduced expressible moisture content (p < 0.05) of surimi gel. L* (lightness), a* (redness), and b* (yellowness) values were increased with augmenting ASBB levels; however, whiteness slightly decreased in surimi gel incorporated with ASBB (p < 0.05). Higher likeness scores were noticed in surimi gel containing ASBB, compared to that of the control. However, a slight decrease in the likeness score was noticed in surimi gel with 10% (w/w) ASBB (p < 0.05). Surimi gel added with 8% (w/w) ASBB possessed the increase in breaking force by 80% from the control and had the highest likeness score. Texture profile analysis of surimi gel added with ASBB showed the improved texture characteristics with coincidentally higher storage modulus of surimi paste. Surimi gel with 8% (w/w) ASBB had a denser and finer microstructure with higher ash, calcium, and phosphorous contents, compared to the control. Thus, incorporation of bio-calcium up to 8% (w/w) not only increased mineral content, but also improved textural, sensory, and microstructural properties of surimi gel.


2021 ◽  
Vol 251 ◽  
pp. 02049
Author(s):  
Li Qian ◽  
Lv Yongbin ◽  
Su Keying ◽  
Luo Simei ◽  
Zhao Shiming ◽  
...  

In order to determine the best drying method of longan flesh, the effects of different drying method (microwave drying, blast drying,vacuum freeze-drying) on the texture characteristics and active ingredients were compared. The results show that different drying methods will increase the hardness, cohesion and chewiness of longan flesh, and decrease the viscosity and elasticity to varying degrees. For active substances, the content of flavonoids and polyphenols is the largest under vacuum freeze-drying, followed by microwave drying and blast drying, but the loss of vitamin C is the opposite. On the whole, vacuum freeze-drying does not cause shrinkage of the flesh, and maintains good hardness, cohesion, chewiness and active ingredients. Comprehensive texture characteristics and changes in active ingredients, vacuum freeze drying is more suitable for drying and processing longan flesh.


Author(s):  
Somayeh Sanjari ◽  
Hamid Sarhadi ◽  
Fatemeh Shahdadi

Background: Spirulina platensis is a photosynthetic microalgae with fibrous filamentous that belongs to the cyanobacteria family. In this study, we investigated the effects of ethanol and methanol extracts as well as the powder of spirulina platensis microelements on the sensory and texture properties of the bread. Methods: In order to determine the texture characteristics, we applied a texture analyser and conducted the Texture Profile Analysis test (Double-Density Compression). Sensory evaluation (hedonic scale 1−5) of the samples was performed by 10 trained panelists. Results: The results showed that use of spirulina microalgae in the formulation of bread altered the tissue properties significantly compared with the control sample. Addition of the spirulina decreased the hardness of the bread compared to the control sample. Moreover, addition of the methanol extract resulted in the highest adhesiveness, while addition of ethanol extract and spirulina microalgae powder led to the highest springiness rate among the samples. The highest and lowest amounts of gumminess were observed in bread samples containing spirulina microalgae powder and control treatments, respectively. The control sample received the highest score regarding all of the sensory features. Samples with spirulina powder received the lowest sensory properties. Conclusion: We can produce spirulina fortified bread with desirable nutritional and sensory characteristics.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 824
Author(s):  
María del Mar Campo ◽  
Leticia Mur ◽  
Ana Guerrero ◽  
Marta Barahona ◽  
Virginia Celia Resconi ◽  
...  

Wooden breast (WB), white striping (WS) and spaghetti meat (SM) are breast myopathies of the Pectoralis major that greatly affect meat quality in broilers. To differentiate color and texture characteristics with instrumental methods, some of them applied for the first time in this species, 300 carcasses were randomly chosen from an abattoir from five different flocks from the same farm, at a rate of 60 carcasses from each flock. Twenty-four hours after slaughter, both side breasts were dissected, and yields calculated. Color was measured on the surface of the breast with a spectrocolorimeter and reflectance values obtained. Texture was measured on raw meat with a modified compression test that hinders the fiber from expanding transversally and a texture profile analysis (TPA) and also on cooked meat with a Warner–Bratzler shear and a TPA. Color differs between severity degrees, increasing redness (from −1.77 to −1.32 in WB) and, especially, yellowness (from 5.00 to 6.73 in WS) and chroma (from 5.75 to 7.22 in SM) with the severity of the myopathy. The subtraction R630 minus R580 was found to be a useful index to differentiate breast myopathies degrees. The modified compression test can be considered an effective tool to assess the hardness of different structures in each myopathy. Texture differences in the myopathies are better assessed in raw than in cooked meat.


Author(s):  
Yago Alves de Aguiar Bernardo ◽  
Denes Kaic Alves do Rosario ◽  
Maria Lúcia Guerra Monteiro ◽  
Sérgio Borges Mano ◽  
Isabella Fernandes Delgado ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 560
Author(s):  
Allah Bakhsh ◽  
Se-Jin Lee ◽  
Eun-Yeong Lee ◽  
Nahar Sabikun ◽  
Young-Hwa Hwang ◽  
...  

This study assessed the effects of Methylcellulose (MC) at different concentrations on plant-based meat analog (PBMA) patties, comprised of commercial texture vegetable protein (C-TVP) and textured isolate soy protein (T-ISP) as key ingredients, and compared to beef patty control. A significantly higher difference was observed in moisture content in control with increasing MC concentration than the C-TVP and T-ISP patties. However, protein varied significantly among three different protein sources, with control had higher protein content than PBMA patties. Crude fiber content recorded higher values in C-TVP as compared to control. Significantly lower pH values were recorded in control than C-TVP and T-ISP respectively. Regardless, with the addition of MC or ingredient PBMA and control patties tend to reduce lightness (L*) and redness (a*) value after cooking. Although control sample before cooking exhibits lighter and redder than PBMA patties (C-TVP and T-ISP). Likewise, water holding capacity (WHC) decreases as the concentration of MC increases (1.5–4%) in control and PBMA patties. Warner-Bratzler shear force (WBSF) and texture profile analysis (TPA), including hardness, chewiness, and gumminess of control, were significantly higher than C-TVP and T-ISP. Consequently, panelists’ in the sensory analysis presented that C-TVP patties containing 3% of MC had better sensory properties than T-ISP. Hence, PBMA patties with C-TVP and incorporation of 3% MC are considered ideal for manufacturing of meat analog as related to control (beef).


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1309
Author(s):  
Muhammad Heikal Ismail ◽  
Hii Ching Lik ◽  
Winny Routray ◽  
Meng Wai Woo

Fresh rice noodle was usually coated in a large amount of oil to avoid stickiness and extend the shelf life. Pre-treatment has been applied to reduce the quantity of oil in rice noodle. In this research, the pre-treatment and temperature effect on the rice noodle quality subjected to hot air drying, heat pump drying, and freeze drying was investigated. Texture, color, oil content, and starch gelatinization of the dried noodle was further evaluated. Results revealed that there were significant differences (p < 0.05%) in texture, color, oil content, and starch gelatinization in rice noodle subjected to pre-treatment. Furthermore, the texture, color, oil content, and starch gelatinization demonstrated a significant difference (p < 0.05%) in freeze drying rather than hot air drying and heat pump drying. The findings indicate that the qualitative features of the dehydrated noodle are synergistic to pretreatment and drying temperature. Despite superior quality shown by freeze drying, the hierarchical scoring has proven that rice noodle undergoing hot air drying at 30 °C to produce comparable quality attributes. The hierarchical scoring can be a useful tool in quality determination for the food industry.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 266
Author(s):  
Shaked Eliyahu ◽  
Alexandra Galitsky ◽  
Esther Ritov ◽  
Havazelet Bianco-Peled

We developed and characterized a new hydrogel system based on the physical and chemical interactions of pectin partially modified with thiol groups and chitosan modified with acrylate end groups. Gelation occurred at high pectin thiol ratios, indicating that a low acrylated chitosan concentration in the hydrogel had a profound effect on the cross-linking. Turbidity, Fourier transform infrared spectroscopy, and free thiol determination analyses were performed to determine the relationships of the different bonds inside the gel. At low pH values below the pKa of chitosan, more electrostatic interactions were formed between opposite charges, but at high pH values, the Michael-type addition reaction between acrylate and thiol took place, creating harder hydrogels. Swelling experiments and Young’s modulus measurements were performed to study the structure and properties of the resultant hydrogels. The nanostructure was examined using small-angle X-ray scattering. The texture profile analysis showed a unique property of hydrogel adhesiveness. By implementing changes in the preparation procedure, we controlled the hydrogel properties. This hybrid hydrogel system can be a good candidate for a wide range of biomedical applications, such as a mucosal biomimetic surface for mucoadhesive testing.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1368
Author(s):  
Marbie Alpos ◽  
Sze Ying Leong ◽  
Indrawati Oey

Legumes are typically soaked overnight to reduce antinutrients and then cooked prior to consumption. However, thermal processing can cause over-softening of legumes. This study aimed to determine the effect of calcium addition (0, 100, 300, and 500 ppm in the form of calcium chloride, CaCl2), starting from the overnight soaking step, in reducing the loss of firmness of black beans during thermal processing for up to 2 h. The impact of calcium addition on the in vitro starch and protein digestibility of cooked beans was also assessed. Two strategies of calcium addition were employed in this study: (Strategy 1/S1) beans were soaked and then cooked in the same CaCl2 solution, or (Strategy 2/S2) cooked in a freshly prepared CaCl2 solution after the calcium-containing soaking medium was discarded. Despite the texture degradation of black beans brought about by increasing the cooking time, texture profile analysis (TPA) revealed that their hardness, cohesiveness, springiness, chewiness, and resilience improved significantly (p < 0.05) with increasing calcium concentration. Interestingly, beans cooked for 2 h with 300 ppm CaCl2 shared similar hardness with beans cooked for 1 h without calcium addition. Starch and protein digestibility of calcium-treated beans generally improved with prolonged cooking. However, calcium-treated beans cooked for 1 h under S2 achieved a reduced texture loss and a lower starch digestibility than those beans treated in S1. A lower starch digestion could be desired as this reflects a slow rise in blood glucose levels. Findings from this result also showed that treating black beans with high level of CaCl2 (i.e., 500 ppm) was not necessary, otherwise this would limit protein digestibility of cooked black beans.


Sign in / Sign up

Export Citation Format

Share Document