scholarly journals Oxygenated fuels properties and its relationship with engine performance in port fuel injection engines.

Author(s):  
Uriel Gonzalez ◽  
Isaac Schifter

Gasoline oxygenating agents (alcohols, ethers and a carbonate) were used to formulate gasoline at different oxygencontents up to 20 wt.% and compared with commercial Premium gasoline.The performance of each fuel was investigated in a port fuel injected, single cylinder, spark-ignited engine at different stages i.e. air fuel mixture preparation, combustion behavior and exhaust emissions. In all cases, the intake cooling effect (related mainly to fuel properties like latent heat of vaporization and Reid Vapor Pressure), shows an important relationship with engine performance and emissions, probably due to reductions in heat losses associated with decreases in charge temperature at compression stroke before ignition. This results was confirmed by means of vehicle FTP-75 test.The high RVP promotes high intake manifold evaporation rate, and the high HoV is related to important cooling effect as the fuel absorbs heat during evaporation. If the fuel evaporates faster upstream intake valves, the advantages of high HoV as a way to reduce compression work and heat transfer fallen.The quantification of the charge cooling effect was done by means of precision intake air temperature control and the instrumentation of a temperature downstream the injector at intake port and as close as possible to the intake valves.The use of oxygenates reduce the hydrogen and carbon fuel contents as a result of fuel dilution. For a given level of oxygenation as lower is the molecular oxygen content in the additive, higher will be the fuel dilution.For 10 wt.% oxygen and more, fuel performance in port engines depends mainly on oxygenate contents and its relationship with HoV and RVP. For oxygenated gasolines, fuel sensitivity have a direct relationship with latent heatls increase RON. In the other hand, MON is almostinsensible to high heat of vaporization, because the intake air is heated to 159 C as a test requirement.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4855

Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1555 ◽  
Author(s):  
Cinzia Tornatore ◽  
Luca Marchitto ◽  
Maria Antonietta Costagliola ◽  
Gerardo Valentino

This study examines the effects of ethanol and gasoline injection mode on the combustion performance and exhaust emissions of a twin cylinder port fuel injection (PFI) spark ignition (SI) engine. Generally, when using gasoline–ethanol blends, alcohol and gasoline are externally mixed with a specified blending ratio. In this activity, ethanol and gasoline were supplied into the intake manifold into two different ways: through two separated low pressure fuel injection systems (Dual-Fuel, DF) and in a blend (mix). The ratio between ethanol and gasoline was fixed at 0.85 by volume (E85). The initial reference conditions were set running the engine with full gasoline at the knock limited spark advance boundary, according to the standard engine calibration. Then E85 was injected and a spark timing sweep was carried out at rich, stoichiometric, and lean conditions. Engine performance and gaseous and particle exhaust emissions were measured. Adding ethanol could remove over-fueling with an increase in thermal efficiency without engine load penalties. Both ethanol and charge leaning resulted in a lowering of CO, HC, and PN emissions. DF injection promoted a faster evaporation of gasoline than in blend, shortening the combustion duration with a slight increase in THC and PN emissions compared to the mix mode.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4023 ◽  
Author(s):  
Stefano d’Ambrosio ◽  
Alessandro Ferrari ◽  
Alessandro Mancarella ◽  
Salvatore Mancò ◽  
Antonio Mittica

An experimental investigation has been carried out to compare the performance and emissions of a low-compression-ratio Euro 5 diesel engine featuring high EGR rates, equipped with different injector technologies, i.e., solenoid, indirect-acting, and direct-acting piezoelectric. The comparisons, performed with reference to a state-of-the-art double fuel injection calibration, i.e., pilot-Main (pM), are presented in terms of engine-out exhaust emissions, combustion noise (CN), and fuel consumption, at low–medium engine speeds and loads. The differences in engine performance and emissions of the solenoidal, indirect-acting, and direct-acting piezoelectric injector setups have been found on the basis of experimental results to mainly depend on the specific features of their hydraulic circuits rather than on the considered injector driving system.


Author(s):  
Girish Parvate-Patil ◽  
Manuel Vasquez ◽  
Malcolm Payne

This paper emphasizes on the effects of different biodiesels and diesel on; heat release, ignition delay, endothermic and exothermic reactions, NOx, fuel injection pressure due to the fuel’s modulus of elasticity and cylinder pressure. Two 100% biodiesel and its blends of 20% with of low sulfur #2 diesel, and #2 diesel are tested on a single cylinder diesel engine under full load condition. Engine performance and emissions data is obtained for 100% and 20% biodiesels blends and #2 diesel. Testes were conducted at Engine Systems Development Centre, Inc. (ESDC) to evaluate the effects of biodiesel and its blends on the performance and emissions of a single-cylinder medium-speed diesel engine. The main objective of this work was to gain initial information and experience about biodiesel for railway application based on which biodiesel and its blends could be recommended for further investigation on actual locomotives.


Author(s):  
E. Movahednejad ◽  
F. Ommi ◽  
M. Hosseinalipour ◽  
O. Samimi

For spark ignition engines, the fuel-air mixture preparation process is known to have a significant influence on engine performance and exhaust emissions. In this paper, an experimental study is made to characterize the spray characteristics of an injector with multi-disc nozzle used in the engine. The distributions of the droplet size and velocity and volume flux were characterized by a PDA system. Also a model of a 4 cylinder multi-point fuel injection engine was prepared using a fluid dynamics code. By this code one-dimensional, unsteady, multiphase flow in the intake port has been modeled to study the mixture formation process in the intake port. Also, one-dimensional air flow and wall fuel film flow and a two-dimensional fuel droplet flow have been modeled, including the effects of in-cylinder mixture back flows into the port. The accuracy of model was verified using experimental results of the engine testing showing good agreement between the model and the real engine. As a result, predictions are obtained that provide a detailed picture of the air-fuel mixture properties along the intake port. A comparison was made on engine performance and exhaust emission in different fuel injection timing for 2600 rpm and different loads. According to the present investigation, optimum injection timing for different engine operating conditions was found.


1998 ◽  
Vol 120 (1) ◽  
pp. 232-236 ◽  
Author(s):  
R. L. Evans ◽  
J. Blaszczyk

The work presented in this paper compares the performance and emissions of the UBC “Squish-Jet” fast-burn combustion chamber with a baseline bowl-in-piston (BIP) chamber. It was found that the increased turbulence generated in the fastburn combustion chambers resulted in 5 to 10 percent faster burning of the air–fuel mixture compared to a conventional BIP chamber. The faster burning was particularly noticeable when operating with lean air–fuel mixtures. The study was conducted at a 1.7 mm clearance height and 10.2:1 compression ratio. Measurements were made over a range of air–fuel ratios from stoichiometric to the lean limit. At each operating point all engine performance parameters, and emissions of nitrogen oxides, unburned hydrocarbons, and carbon monoxide were recorded. At selected operating points a record of cylinder pressure was obtained and analyzed off-line to determine mass-burn rate in the combustion chamber. Two piston designs were tested at wide-open throttle conditions and 2000 rpm to determine the influence of piston geometry on the performance and emissions parameters. The UBC squish-jet combustion chamber design demonstrates significantly better performance parameters and lower emission levels than the conventional BIP design. Mass-burn fraction calculations showed a significant reduction in the time to burn the first 10 percent of the charge, which takes approximately half of the time to burn from 10 to 90 percent of the charge.


2018 ◽  
Vol 10 (0) ◽  
pp. 1-9
Author(s):  
Romualdas Juknelevičius

The article presents the test results of the single cylinder CI engine with common rail injection system operating on biofuel – Rapeseed Methyl Ester with addition supply of hydrogen. The purpose of this investigation was to examine the influence of the hydrogen addition to the biofuel on combustion phases, engine performance, efficiency, and exhaust emissions. HES was changed within the range from 0 to 44%. Hydrogen was injected into the intake manifold, where it created homogeneous mixture with air. Tests were performed at both fixed and optimal injection timings at low, medium and nominal engine load. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that lean hydrogen – RME mixture does not support the flame propagation and efficient combustion. While at the rich fuel mixture and with increasing hydrogen fraction, the combustion intensity concentrate at the beginning of the combustion process and shortened the ignition delay phase. AVL BOOST simulation performed within the wide range of HES (16–80%) revealed that combustion intensity moves to the beginning of combustion with increase of HES. Decrease of CO, CO2 and smoke opacity was observed with increase of hydrogen amounts to the engine. However, increase of the NO concentration in the engine exhaust gases was observed. Santrauka Straipsnyje pateikti tyrimo rezultatai, gauti atlikus bandymą vieno cilindro slėginio uždegimo variklyje su biodegalais – rapsų metilesterį (RME) ir vandenilį. Biodegalai įpurškiami akumuliatorine įpurškimo sistema „Common rail“. Šio tyrimo tikslas – ištirti, kaip vandenilis veikia biodegalų degimą, variklio veikimą, jo efektyvumą ir deginių susidarymą. Vandenilio energinė dalis degimo mišinyje buvo keičiama nuo 0 iki 44 %. Vandenilis buvo tiekiamas įsiurbimo fazės metu įsiurbimo kanalu į degimo kamerą, kurioje jis, susimaišęs su oru, sudaro homogeninį mišinį. Bandymai buvo atliekami nekeičiant įpurškimo kampo, nustačius optimalų įpurškimo kampą esant žemai, vidutinei ir nominaliai variklio apkrovai. Išnagrinėjus variklio bandymų rezultatus ir sumodeliavu AVL BOOST programa, buvo pastebėta, kad, esant liesam vandenilio ir RME mišiniui, liepsnos plitimas yra lėtas, mišinys dega neveiksmingai. Tačiau riebus degalų mišinys ir padidinta vandenilio energijos dalis užtikrina degimo intensyvumą degimo proceso pradžioje ir sutrumpina uždegimo gaišties trukmę. AVL BOOST modeliavimas, atliktas plačiu vandenilio energijos dalies diapazonu (16–80 %), patvirtino teiginį, kad degimas tampa intensyvesnis degimo pradžioje dėl padidinto vandenilio kiekio. Didinant vandenilio kiekį, buvo pastebėta, kad išmetamosiose dujose sumažėjo CO, CO2 ir kietųjų dalelių, tačiau padidėjo NO koncentracija.


Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin E. Dumitrescu

Abstract Converting existing compression ignition (CI) engines to spark ignition (SI) operation can increase the use of natural gas (NG) in heavy-duty engine applications and reduce the reliance on petroleum fuels. Gas fumigation upstream of the intake manifold and the addition of a spark plug in place of the diesel injector to initiate and control the combustion process is a convenient approach for converting existing diesel engines to dedicated NG operation. Stoichiometric operation and a three-way catalytic converter can help the engine to comply with increasingly strict emission regulations. However, as the CI-to-SI conversion usually maintains the conventional geometry of a CI engine (i.e., maintains the flat cylinder head and the bowl-in piston), the goal of this study was to observe some of the effects that the diesel conversion to stoichiometric NG SI operation will have on the engine’s performance and emissions. Dynamometer tests were performed at a constant engine speed at 1300 rpm but various spark timings. The experimental results for a net indicated mean effective pressure ∼ 6.7 bar showed that ignition timing did not affect the end of combustion due to the slow-burn inside the squish. Moreover, the less-optimal conditions inside the squish led to increased carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. While the combustion event was stable with no signs of knocking at the medium load conditions investigated here, the results suggest that the engine control needs to optimize the mass fraction trapped inside the squish region for a higher efficiency and lower emissions.


2019 ◽  
Author(s):  
Brian Gainey ◽  
James Gohn ◽  
Ziming Yan ◽  
Khurram Malik ◽  
Mozhgan Rahimi Boldaji ◽  
...  

2021 ◽  
Vol 15 (2) ◽  
pp. 8153-8168
Author(s):  
Saeed Chamehsara ◽  
Mohammadreza Karami

In order to repair internal combustion engines, sometimes it is necessary to replace the components of these engines with each other. Therefore changes in engine performance are inevitable in these conditions. In the present study, by changing the coneccting rod and the crank of the OM457 turbo diesel-fueled engine with the OM444, it was observed that the performance of the engine decreases. Numerical simulations have been carried out to study the Possible ways to mitigate this reduction. One way to achieve this goal is to change the fuel injector’s characteristics such as, fuel injector’s nozzle hole diameter, number of nozzle holes, and start time of fuel injection. In this study, the impact of these parameters on the performance and emissions of these engines were analyzed. Another scenario is an increase in inlet fuel and air by the same amount. The results indicate that By reducing the diameter of fuel injector holes and hole numbers, the performance of the engine was increased. on the other hand, the NOx emissions were increased while the amount of soot emission decreased. The same results were concluded by retarding the start time of injection. Subsequently, a case study of changing fuel injector parameters for mitigation of decreased performance was performed. These parameters were simultaneously applied, and results were compared. The performance of the engine with improved injector’s characteristics was close to the main OM457. Similar results were obtained by increasing the amount of inlet air and fuel.


Sign in / Sign up

Export Citation Format

Share Document