scholarly journals Modelling pre-modern flow distances of inland waterways – a GIS study in southern Germany

2021 ◽  
Vol 12 (25) ◽  
pp. 42
Author(s):  
Lukas Werther ◽  
Tanja Menn ◽  
Johannes Schmidt ◽  
Hartmut Müller

<p class="VARAbstract">Rivers form major traffic arteries in pre-modern Central Europe and accurate regional to supra-regional network models of inland navigation are crucial for economic history. However, navigation distances have hitherto been based on modern flow distances, which could be a significant source of error due to modern changes in flow distance and channel pattern. Here, we use a systematic comparison of vectorized old maps, which enlighten the fluvial landscape before most of the large-scale river engineering took place, and modern opensource geodata to deduce change ratios of flow distance and channel patterns. The river courses have been vectorised, edited and divided into comparable grid units. Based on the thalweg, meandering and braided/anabranching river sections have been identified and various ratios have been calculated in order to detect changes in length and channel patterns. Our large-scale analytical approach and Geographic Information System (GIS) workflow are transferable to other rivers in order to deduce change ratios on a European scale. The 19<sup>th</sup> century flow distance is suitable to model pre-modern navigation distances. As a case study, we have used our approach to reconstruct changes of flow pattern, flow distance and subsequent changes in navigation distance and transportation time for the rivers Altmühl, Danube, Main, Regnitz, Rednitz, Franconian and Swabian Rezat (Southern Germany). The change ratio is rather heterogeneous with length and travel time changes of the main channel up to 24% and an extensive transformation of channel morphology in many river sections. Based on published travel time data, we have modelled the effect of our change ratios. Shipping between the commercial hubs Ulm and Regensburg, to give an example, was up to 5 days longer based on pre-modern distances. This is highly significant and underlines the necessity for river-specific correction values to model supra-regional networks of pre-modern inland waterways and navigation with higher precision.</p><p>Highlights:</p><ul><li><p>Systematic comparison of old maps and modern geodata to deduce river-specific length correction values to improve supra-regional network models of pre-modern inland navigation.</p></li><li><p>Large-scale analytical approach and transferable GIS workflow for flow distance reconstruction with case studies in Southern Germany.</p></li><li><p>Length changes of navigated fairways result in pre-modern period travel times up to 24% higher in corrected models.</p></li></ul>

The success of the Program of housing stock renovation in Moscow depends on the efficiency of resource management. One of the main urban planning documents that determine the nature of the reorganization of residential areas included in the Program of renovation is the territory planning project. The implementation of the planning project is a complex process that has a time point of its beginning and end, and also includes a set of interdependent parallel-sequential activities. From an organizational point of view, it is convenient to use network planning and management methods for project implementation. These methods are based on the construction of network models, including its varieties – a Gantt chart. A special application has been developed to simulate the implementation of planning projects. The article describes the basic principles and elements of modeling. The list of the main implementation parameters of the Program of renovation obtained with the help of the developed software for modeling is presented. The variants of using the results obtained for a comprehensive analysis of the implementation of large-scale urban projects are proposed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giuseppe Giacopelli ◽  
Domenico Tegolo ◽  
Emiliano Spera ◽  
Michele Migliore

AbstractThe brain’s structural connectivity plays a fundamental role in determining how neuron networks generate, process, and transfer information within and between brain regions. The underlying mechanisms are extremely difficult to study experimentally and, in many cases, large-scale model networks are of great help. However, the implementation of these models relies on experimental findings that are often sparse and limited. Their predicting power ultimately depends on how closely a model’s connectivity represents the real system. Here we argue that the data-driven probabilistic rules, widely used to build neuronal network models, may not be appropriate to represent the dynamics of the corresponding biological system. To solve this problem, we propose to use a new mathematical framework able to use sparse and limited experimental data to quantitatively reproduce the structural connectivity of biological brain networks at cellular level.


Author(s):  
Lucas Meyer de Freitas ◽  
Oliver Schuemperlin ◽  
Milos Balac ◽  
Francesco Ciari

This paper shows an application of the multiagent, activity-based transport simulation MATSim to evaluate equity effects of a congestion charging scheme. A cordon pricing scheme was set up for a scenario of the city of Zurich, Switzerland, to conduct such an analysis. Equity is one of the most important barriers toward the implementation of a congestion charging system. After the challenges posed by equity evaluations are examined, it is shown that agent-based simulations with heterogeneous values of time allow for an increased level of detail in such evaluations. Such detail is achieved through a high level of disaggregation and with a 24-h simulation period. An important difference from traditional large-scale models is the low degree of correlation between travel time savings and welfare change. While traditional equity analysis is based on travel time savings, MATSim shows that choice dimensions not included in traditional models, such as departure time changes, can also play an important role in equity effects. The analysis of the results in light of evidence from the literature shows that agent-based models are a promising tool to conduct more complete equity evaluations not only of congestion charges but also of transport policies in general.


1997 ◽  
pp. 931-935 ◽  
Author(s):  
Anders Lansner ◽  
Örjan Ekeberg ◽  
Erik Fransén ◽  
Per Hammarlund ◽  
Tomas Wilhelmsson

Author(s):  
Ömer Verbas ◽  
Joshua Auld ◽  
Hubert Ley ◽  
Randy Weimer ◽  
Shon Driscoll

This paper proposes a time-dependent intermodal A* (TDIMA*) algorithm. The algorithm works on a multimodal network with transit, walking, and vehicular network links, and finds paths for the three major modes (transit, walking, driving) and any feasible combination thereof (e.g., park-and-ride). Turn penalties on the vehicular network and progressive transfer penalties on the transit network are considered for improved realism. Moreover, upper bounds to prevent excessive waiting and walking are introduced, as well as an upper bound on driving for the park-and-ride (PNR) mode. The algorithm is validated on the large-scale Chicago Regional network using real-world trips against the Google Directions API and the Regional Transit Authority router.


Author(s):  
Qibin Zhou ◽  
Qingang Su ◽  
Dingyu Yang

Real-time traffic estimation focuses on predicting the travel time of one travel path, which is capable of helping drivers selecting an appropriate or favor path. Statistical analysis or neural network approaches have been explored to predict the travel time on a massive volume of traffic data. These methods need to be updated when the traffic varies frequently, which incurs tremendous overhead. We build a system RealTER⁢e⁢a⁢l⁢T⁢E, implemented on a popular and open source streaming system StormS⁢t⁢o⁢r⁢m to quickly deal with high speed trajectory data. In RealTER⁢e⁢a⁢l⁢T⁢E, we propose a locality-sensitive partition and deployment algorithm for a large road network. A histogram estimation approach is adopted to predict the traffic. This approach is general and able to be incremental updated in parallel. Extensive experiments are conducted on six real road networks and the results illustrate RealTE achieves higher throughput and lower prediction error than existing methods. The runtime of a traffic estimation is less than 11 seconds over a large road network and it takes only 619619 microseconds for model updates.


2020 ◽  
Vol 34 (05) ◽  
pp. 9282-9289
Author(s):  
Qingyang Wu ◽  
Lei Li ◽  
Hao Zhou ◽  
Ying Zeng ◽  
Zhou Yu

Many social media news writers are not professionally trained. Therefore, social media platforms have to hire professional editors to adjust amateur headlines to attract more readers. We propose to automate this headline editing process through neural network models to provide more immediate writing support for these social media news writers. To train such a neural headline editing model, we collected a dataset which contains articles with original headlines and professionally edited headlines. However, it is expensive to collect a large number of professionally edited headlines. To solve this low-resource problem, we design an encoder-decoder model which leverages large scale pre-trained language models. We further improve the pre-trained model's quality by introducing a headline generation task as an intermediate task before the headline editing task. Also, we propose Self Importance-Aware (SIA) loss to address the different levels of editing in the dataset by down-weighting the importance of easily classified tokens and sentences. With the help of Pre-training, Adaptation, and SIA, the model learns to generate headlines in the professional editor's style. Experimental results show that our method significantly improves the quality of headline editing comparing against previous methods.


Author(s):  
Sacha J. van Albada ◽  
Jari Pronold ◽  
Alexander van Meegen ◽  
Markus Diesmann

AbstractWe are entering an age of ‘big’ computational neuroscience, in which neural network models are increasing in size and in numbers of underlying data sets. Consolidating the zoo of models into large-scale models simultaneously consistent with a wide range of data is only possible through the effort of large teams, which can be spread across multiple research institutions. To ensure that computational neuroscientists can build on each other’s work, it is important to make models publicly available as well-documented code. This chapter describes such an open-source model, which relates the connectivity structure of all vision-related cortical areas of the macaque monkey with their resting-state dynamics. We give a brief overview of how to use the executable model specification, which employs NEST as simulation engine, and show its runtime scaling. The solutions found serve as an example for organizing the workflow of future models from the raw experimental data to the visualization of the results, expose the challenges, and give guidance for the construction of an ICT infrastructure for neuroscience.


2021 ◽  
Author(s):  
Damoun Langary ◽  
Anika Kueken ◽  
Zoran Nikoloski

Balanced complexes in biochemical networks are at core of several theoretical and computational approaches that make statements about the properties of the steady states supported by the network. Recent computational approaches have employed balanced complexes to reduce metabolic networks, while ensuring preservation of particular steady-state properties; however, the underlying factors leading to the formation of balanced complexes have not been studied, yet. Here, we present a number of factorizations providing insights in mechanisms that lead to the origins of the corresponding balanced complexes. The proposed factorizations enable us to categorize balanced complexes into four distinct classes, each with specific origins and characteristics. They also provide the means to efficiently determine if a balanced complex in large-scale networks belongs to a particular class from the categorization. The results are obtained under very general conditions and irrespective of the network kinetics, rendering them broadly applicable across variety of network models. Application of the categorization shows that all classes of balanced complexes are present in large-scale metabolic models across all kingdoms of life, therefore paving the way to study their relevance with respect to different properties of steady states supported by these networks.


Sign in / Sign up

Export Citation Format

Share Document