scholarly journals Multiclass semantic segmentation for digitisation of movable heritage using deep learning techniques

2021 ◽  
Vol 12 (25) ◽  
pp. 85
Author(s):  
Giacomo Patrucco ◽  
Francesco Setragno

<p class="VARAbstract">Digitisation processes of movable heritage are becoming increasingly popular to document the artworks stored in our museums. A growing number of strategies for the three-dimensional (3D) acquisition and modelling of these invaluable assets have been developed in the last few years. Their objective is to efficiently respond to this documentation need and contribute to deepening the knowledge of the masterpieces investigated constantly by researchers operating in many fieldworks. Nowadays, one of the most effective solutions is represented by the development of image-based techniques, usually connected to a Structure-from-Motion (SfM) photogrammetric approach. However, while images acquisition is relatively rapid, the processes connected to data processing are very time-consuming and require the operator’s substantial manual involvement. Developing deep learning-based strategies can be an effective solution to enhance the automatism level. In this research, which has been carried out in the framework of the digitisation of a wooden maquettes collection stored in the ‘Museo Egizio di Torino’, using a photogrammetric approach, an automatic masking strategy using deep learning techniques is proposed, to increase the level of automatism and therefore, optimise the photogrammetric pipeline. Starting from a manually annotated dataset, a neural network was trained to automatically perform a semantic classification to isolate the maquettes from the background. The proposed methodology allowed the researchers to obtain automatically segmented masks with a high degree of accuracy. The workflow is described (as regards acquisition strategies, dataset processing, and neural network training). In addition, the accuracy of the results is evaluated and discussed. Finally, the researchers proposed the possibility of performing a multiclass segmentation on the digital images to recognise different object categories in the images, as well as to define a semantic hierarchy to perform automatic classification of different elements in the acquired images.</p><p><strong>Highlights:</strong></p><ul><li><p>In the framework of movable heritage digitisation processes, many procedures are very time-consuming, and they still require the operator’s substantial manual involvement.</p></li><li><p>This research proposes using deep learning techniques to enhance the automatism level in the generation of exclusion masks, improving the optimisation of the photogrammetric procedures.</p></li><li><p>Following this strategy, the possibility of performing a multiclass semantic segmentation (on the 2D images and, consequently, on the 3D point cloud) is also discussed, considering the accuracy of the obtainable results.</p></li></ul>

2018 ◽  
Author(s):  
Yuta Tokuoka ◽  
Takahiro G Yamada ◽  
Noriko F Hiroi ◽  
Tetsuya J Kobayashi ◽  
Kazuo Yamagata ◽  
...  

AbstractIn embryology, image processing methods such as segmentation are applied to acquiring quantitative criteria from time-series three-dimensional microscopic images. When used to segment cells or intracellular organelles, several current deep learning techniques outperform traditional image processing algorithms. However, segmentation algorithms still have unsolved problems, especially in bioimage processing. The most critical issue is that the existing deep learning-based algorithms for bioimages can perform only semantic segmentation, which distinguishes whether a pixel is within an object (for example, nucleus) or not. In this study, we implemented a novel segmentation algorithm, based on deep learning, which segments each nucleus and adds different labels to the detected objects. This segmentation algorithm is called instance segmentation. Our instance segmentation algorithm, implemented as a neural network, which we named QCA Net, substantially outperformed 3D U-Net, which is the best semantic segmentation algorithm that uses deep learning. Using QCA Net, we quantified the nuclear number, volume, surface area, and center of gravity coordinates during the development of mouse embryos. In particular, QCA Net distinguished nuclei of embryonic cells from those of polar bodies formed in meiosis. We consider that QCA Net can greatly contribute to bioimage segmentation in embryology by generating quantitative criteria from segmented images.


Author(s):  
Prisilla Jayanthi ◽  
Muralikrishna Iyyanki

In deep learning, the main techniques of neural networks, namely artificial neural network, convolutional neural network, recurrent neural network, and deep neural networks, are found to be very effective for medical data analyses. In this chapter, application of the techniques, viz., ANN, CNN, DNN, for detection of tumors in numerical and image data of brain tumor is presented. First, the case of ANN application is discussed for the prediction of the brain tumor for which the disease symptoms data in numerical form is the input. ANN modelling was implemented for classification of human ethnicity. Next the detection of the tumors from images is discussed for which CNN and DNN techniques are implemented. Other techniques discussed in this study are HSV color space, watershed segmentation and morphological operation, fuzzy entropy level set, which are used for segmenting tumor in brain tumor images. The FCN-8 and FCN-16 models are used to produce a semantic segmentation on the various images. In general terms, the techniques of deep learning detected the tumors by training image dataset.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3813
Author(s):  
Athanasios Anagnostis ◽  
Aristotelis C. Tagarakis ◽  
Dimitrios Kateris ◽  
Vasileios Moysiadis ◽  
Claus Grøn Sørensen ◽  
...  

This study aimed to propose an approach for orchard trees segmentation using aerial images based on a deep learning convolutional neural network variant, namely the U-net network. The purpose was the automated detection and localization of the canopy of orchard trees under various conditions (i.e., different seasons, different tree ages, different levels of weed coverage). The implemented dataset was composed of images from three different walnut orchards. The achieved variability of the dataset resulted in obtaining images that fell under seven different use cases. The best-trained model achieved 91%, 90%, and 87% accuracy for training, validation, and testing, respectively. The trained model was also tested on never-before-seen orthomosaic images or orchards based on two methods (oversampling and undersampling) in order to tackle issues with out-of-the-field boundary transparent pixels from the image. Even though the training dataset did not contain orthomosaic images, it achieved performance levels that reached up to 99%, demonstrating the robustness of the proposed approach.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2258
Author(s):  
Madhab Raj Joshi ◽  
Lewis Nkenyereye ◽  
Gyanendra Prasad Joshi ◽  
S. M. Riazul Islam ◽  
Mohammad Abdullah-Al-Wadud ◽  
...  

Enhancement of Cultural Heritage such as historical images is very crucial to safeguard the diversity of cultures. Automated colorization of black and white images has been subject to extensive research through computer vision and machine learning techniques. Our research addresses the problem of generating a plausible colored photograph of ancient, historically black, and white images of Nepal using deep learning techniques without direct human intervention. Motivated by the recent success of deep learning techniques in image processing, a feed-forward, deep Convolutional Neural Network (CNN) in combination with Inception- ResnetV2 is being trained by sets of sample images using back-propagation to recognize the pattern in RGB and grayscale values. The trained neural network is then used to predict two a* and b* chroma channels given grayscale, L channel of test images. CNN vividly colorizes images with the help of the fusion layer accounting for local features as well as global features. Two objective functions, namely, Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), are employed for objective quality assessment between the estimated color image and its ground truth. The model is trained on the dataset created by ourselves with 1.2 K historical images comprised of old and ancient photographs of Nepal, each having 256 × 256 resolution. The loss i.e., MSE, PSNR, and accuracy of the model are found to be 6.08%, 34.65 dB, and 75.23%, respectively. Other than presenting the training results, the public acceptance or subjective validation of the generated images is assessed by means of a user study where the model shows 41.71% of naturalness while evaluating colorization results.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


Author(s):  
Leonardo Tanzi ◽  
Pietro Piazzolla ◽  
Francesco Porpiglia ◽  
Enrico Vezzetti

Abstract Purpose The current study aimed to propose a Deep Learning (DL) and Augmented Reality (AR) based solution for a in-vivo robot-assisted radical prostatectomy (RARP), to improve the precision of a published work from our group. We implemented a two-steps automatic system to align a 3D virtual ad-hoc model of a patient’s organ with its 2D endoscopic image, to assist surgeons during the procedure. Methods This approach was carried out using a Convolutional Neural Network (CNN) based structure for semantic segmentation and a subsequent elaboration of the obtained output, which produced the needed parameters for attaching the 3D model. We used a dataset obtained from 5 endoscopic videos (A, B, C, D, E), selected and tagged by our team’s specialists. We then evaluated the most performing couple of segmentation architecture and neural network and tested the overlay performances. Results U-Net stood out as the most effecting architectures for segmentation. ResNet and MobileNet obtained similar Intersection over Unit (IoU) results but MobileNet was able to elaborate almost twice operations per seconds. This segmentation technique outperformed the results from the former work, obtaining an average IoU for the catheter of 0.894 (σ = 0.076) compared to 0.339 (σ = 0.195). This modifications lead to an improvement also in the 3D overlay performances, in particular in the Euclidean Distance between the predicted and actual model’s anchor point, from 12.569 (σ= 4.456) to 4.160 (σ = 1.448) and in the Geodesic Distance between the predicted and actual model’s rotations, from 0.266 (σ = 0.131) to 0.169 (σ = 0.073). Conclusion This work is a further step through the adoption of DL and AR in the surgery domain. In future works, we will overcome the limits of this approach and finally improve every step of the surgical procedure.


2021 ◽  
Author(s):  
Sang-Heon Lim ◽  
Young Jae Kim ◽  
Yeon-Ho Park ◽  
Doojin Kim ◽  
Kwang Gi Kim ◽  
...  

Abstract Pancreas segmentation is necessary for observing lesions, analyzing anatomical structures, and predicting patient prognosis. Therefore, various studies have designed segmentation models based on convolutional neural networks for pancreas segmentation. However, the deep learning approach is limited by a lack of data, and studies conducted on a large computed tomography dataset are scarce. Therefore, this study aims to perform deep-learning-based semantic segmentation on 1,006 participants and evaluate the automatic segmentation performance of the pancreas via four individual three-dimensional segmentation networks. In this study, we performed internal validation with 1,006 patients and external validation using the Cancer Imaging Archive (TCIA) pancreas dataset. We obtained mean precision, recall, and dice similarity coefficients of 0.869, 0.842, and 0.842, respectively, for internal validation via a relevant approach among the four deep learning networks. Using the external dataset, the deep learning network achieved mean precision, recall, and dice similarity coefficients of 0.779, 0.749, and 0.735, respectively. We expect that generalized deep-learning-based systems can assist clinical decisions by providing accurate pancreatic segmentation and quantitative information of the pancreas for abdominal computed tomography.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3921 ◽  
Author(s):  
Wuttichai Boonpook ◽  
Yumin Tan ◽  
Yinghua Ye ◽  
Peerapong Torteeka ◽  
Kritanai Torsri ◽  
...  

Buildings along riverbanks are likely to be affected by rising water levels, therefore the acquisition of accurate building information has great importance not only for riverbank environmental protection but also for dealing with emergency cases like flooding. UAV-based photographs are flexible and cloud-free compared to satellite images and can provide very high-resolution images up to centimeter level, while there exist great challenges in quickly and accurately detecting and extracting building from UAV images because there are usually too many details and distortions on UAV images. In this paper, a deep learning (DL)-based approach is proposed for more accurately extracting building information, in which the network architecture, SegNet, is used in the semantic segmentation after the network training on a completely labeled UAV image dataset covering multi-dimension urban settlement appearances along a riverbank area in Chongqing. The experiment results show that an excellent performance has been obtained in the detection of buildings from untrained locations with an average overall accuracy more than 90%. To verify the generality and advantage of the proposed method, the procedure is further evaluated by training and testing with another two open standard datasets which have a variety of building patterns and styles, and the final overall accuracies of building extraction are more than 93% and 95%, respectively.


Sign in / Sign up

Export Citation Format

Share Document