scholarly journals Radiopacity of Mineral Trioxide Aggregate with and without Inclusion of Silver Nanoparticles

2017 ◽  
Vol 18 (6) ◽  
pp. 448-451
Author(s):  
Flávia GR Cardoso ◽  
Mariana SS Mendes ◽  
Leonardo D Resende ◽  
Cláudia A Pinto ◽  
Denise P Raldi ◽  
...  

ABSTRACT Aim The aim of this study was to investigate the inclusion of silver nanoparticles (Ag NPs) in the mineral trioxide aggregate (MTA) composition to know which changes will result in the radiopacity of the material. Materials and methods The experiment was performed according to the American National Standard Institute/American Dental Association specification no. 57/2000 and ISO 6876/2001. Five plates with five holes measuring 1 mm in depth and 5 mm in internal diameter were filled according to the different experimental groups as follows: white mineral trioxide aggregate (WMTA) + NP50 – W MTA with liquid Ag NP 50 ppm, WMTA + NP30 – W MTA with liquid Ag NP 30 ppm, WMTA + NP22 – W MTA with liquid Ag NP 22 ppm, WMTA + NPP – white MTA with liquid Ag NP and powder 1%, WMTA (control). After filling the plates, they were kept in an incubator at 37°C in relative humidity for setting. Each sample was positioned along an aluminum step-wedge placed above the Opteo digital sensor system. The image was divided into four quadrants, and three readings were made for each quadrant to render the average of each quadrant. The resulting data were submitted to Kruskal–Wallis and Dunn's tests. Results The results showed statistically significant differences between WMTA + NP30, WMTA + NP22, and WMTA + NPP interactions compared with WMTA (control) (p < 0.05). The radiopacity was in descending order: WMTA + NPP, WMTA + NP22, WMTA + NP30, MTA + NP50, and WMTA. Conclusion Silver NPs changed the radiopacity of WMTA, being more evident in WMTA + NP powder at 1% weight. Clinical significance The low radiopacity of MTA makes it difficult for any radiographic observation. The Ag NPs appear as an alternative, being an excellent radiopacifier as they have excellent antimicrobial property and relatively low toxicity. How to cite this article Mendes MSS, Resende LD, Pinto CA, Raldi DP, Cardoso FGR, Habitante SM. Radiopacity of Mineral Trioxide Aggregate with and without Inclusion of Silver Nanoparticles. J Contemp Dent Pract 2017;18(6):448-451.

2012 ◽  
Vol 23 (5) ◽  
pp. 539-546 ◽  
Author(s):  
Carlos Estrela ◽  
Manoel Damião Sousa-Neto ◽  
Orlando Aguirre Guedes ◽  
Ana Helena Gonçalves Alencar ◽  
Marco Antonio Hungaro Duarte ◽  
...  

Root perforation represents an undesirable complication that may lead to an unfavorable prognosis. The aims of this study were to characterize and to compare the presence of calcium oxide (CaO) on the chemical composition of materials used for root perforation therapy: gray and white mineral trioxide aggregate (MTA) and Portland cement (PC), gray MTA+5%CaO and gray MTA+10%CaO. The last two materials were analyzed to evaluate the increase of CaO in the final sample. CaO alone was used as a standard. Eighteen polyethylene tubes with an internal diameter of 3 mm and 3 mm in length were prepared, filled and then transferred to a chamber with 95% relative humidity and a temperature of 37ºC. The chemical compounds (particularly CaO) and the main components were analyzed by energy-dispersive X-ray microanalysis (EDX). EDX revealed the following concentrations of CaO: gray MTA: 59.28%, white MTA: 63.09%; PC: 72.51%; gray MTA+5%CaO: 63.48% and gray MTA+10%CaO: 67.55%. The tested materials presented different concentrations of CaO. Even with an increase of 5 and 10% CaO in gray MTA, the CaO levels found in the MTA samples were lower than those found in PC.


Particles of sizes between 1 and 100 nanometers are known as nanoparticles. The natural materials like plant leaf extract, bacteria and fungi for the synthesis of silver nanoparticles has numerous benefits. In this scenario, the main objective of this work is to utilize Delonix Regia pod extract for the synthesis of silver nanoparticles (NPs) and check its feasibility as disinfectant. Pod extract prepared was subjected to EDS analysis. Transformed silver NPs are coated onto GAC(1.5mm) and subjected to SEM analyses. Column study was carried to check the disinfecting action of silver NPs for varied contact time by monitoring MPN value. From this research work, it can be concluded as, for pod extract, peak absorbance was found at 360nm. Delonix Regia pod extract transforms into silver nanoparticles moderately to about 4.63-8.85%. Silver nanoparticles are coated onto Activated Carbon, dried and stored for extended period without loss of nanoparticles. At 30min contact time efficiency was found to be 63% and 71 for NP2.5 and NP5 respectively. Green synthesized silver nanoparticles are proved to be moderately effective in disinfecting contaminated water.


2009 ◽  
Vol 1208 ◽  
Author(s):  
Zhengda Pan ◽  
A Crosby ◽  
O Obadina ◽  
A. Ueda ◽  
R. Aga ◽  
...  

AbstractTb-doped Li2O-LaF3-Al2O3-SiO2 (LLAS) glasses containing silver were fabricated using melt-quenching technique. Silver nanoparticles (NPs) in glass matrix were confirmed by optical absorption and X-ray diffraction (XRD). The nucleation of silver NPs was controlled by heat-treatment. A broad absorption band peaked at about 420 nm was observed due to surface plasmon resonance (SPR) of the silver NPs. This SPR absorption of silver NPs increases with the time of heat-treatment. Photoluminescence (PL) emission and excitation spectra were measured on Tb-doped LLAS glasses with and without silver NPs. Strong Tb3+ luminescence was observed. For excitation at 325 nm, luminescence of Tb3+ ions increases for the glass containing silver NPs compared to that in the glass without silver NPs. After further heat-treatment at 520 °C for 5 hours, Tb3+ luminescence decreased. Our luminescence results suggest that there are two competitive effects, enhancement and quenching effects, acting on Tb3+ luminescence in the glass containing silver NPs. The enhancement of Tb3+ luminescence is attributed to local field effects due to the excitation of SPR of silver NPs. The quenching effect in the presence of Ag NPs suggests an energy transfer from Tb3+ ions to silver NPs exists, which may provide an additional non-radiative relaxation pathway for the excited Tb3+ ions.


2021 ◽  
Vol 59 (2) ◽  
pp. 214
Author(s):  
Dung Ngo Thanh ◽  
Nguyet Ha Minh ◽  
Tam Le Thi Thanh ◽  
Lu Le Trong

In this study, silver nanoparticles were synthesized from aqueous silver nitrate through a simple and eco-friendly route using a combination of two reducing agents: sodium citrate and tannic acid. By this method, the obtained Ag nanoparticles (NPs) were stable within the studied period of six months. Besides, both TEM images and UV-Vis results showed that the size of silver NPs could be controlled by changing the concentration of tannic acid. The antibacterial ability of Ag NPs with different sizes were also examined. In detail, the smaller the Ag NPs were, the more efficient their antibacterial activity was.


2020 ◽  
Vol 7 (4) ◽  
Author(s):  
Amir KarimiPourSaryazdi ◽  
Pooya Tavakoli ◽  
Mohammad Barati ◽  
Fatemeh Ghaffarifar ◽  
Ali Dalir Ghaffari ◽  
...  

Background: Toxoplasmosis is a tropical disease that is opportunistic in immunocompromised patients. Objectives: In this research, our goal was to assess the anti-parasitic effect of silver nanoparticles (Ag-NPs) based on ginger extract on T. gondii tachyzoites. Methods: This study was conducted to assess the effects of various concentrations of nanoparticles on the parasite using light microscopy. The MTT assay was also conducted to evaluate the toxic effects of silver nanoparticles based on ginger extract on macrophage cells. In addition, the potential apoptosis of T. gondii by silver NPs was assessed using the flow cytometry technique. Results: Based on the tachyzoite assay using microscopic examination, it was observed that the higher the NPs concentration and the longer the parasite’s exposure to NPs, the greater the lethal effect of NPs on tachyzoites. The IC50 (inhibitory concentration) for NPs against T. gondii tachyzoites was 2 ppm. Also, according to the MTT assay, the 40 ppm concentration of nanoparticles had the most toxic impact on macrophages. Moreover, silver NPs led to apoptosis in approximately 55.22% of tachyzoites based on the flow cytometry technique. Conclusions: Based on the above results, it is concluded that silver nanoparticles based on ginger extract have a lethal effect on T. gondii and induce apoptosis in this parasite. This study encourages further studies in vivo.


Photochem ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 264-274
Author(s):  
John Sherin ◽  
Puvanesvaran Senthil Kumar ◽  
Swaminathan Karuthapandian

In the present study, we report the greener, simple, cost effective, non-hazardous and ecofriendly synthesis of silver (Ag) nanoparticles from Alstonia scholaris (L.) R. Br. for the first time. The synthesis of silver nanoparticles using the leaf stock acted as a reducing as well as the capping agent simultaneously. The bio-reduced silver nanoparticles were characterized using ultra violet-visible spectroscopy (UV) exhibiting blue shift absorption peak in the region 440 nm. The newly synthesized Ag NPs were sphere-like in structure and grew well with a crystalline size of 16.57 nm. The Fourier transform infrared (FT-IR) analysis identifies the biomolecules which are involved during the synthesis process. The synthesized nanocatalyst served as a good catalyst for degrading methyl orange dye under solar light irradiation and was monitored spectrophotometrically. Furthermore, the antimicrobial potential of Ag NPs was evaluated an could competently inhibit different pathogenic organisms, including bacteria and fungi. Additionally, the efficiency of the silver nanoparticles was tested against the photocatalytic degradation of methyl orange dye pollutant. Different operational parameters such as catalyst weight dosage, dye concentration and different pH were optimized. The pollutants were degraded within 35 min. The present research work opens a pathway to synthesize nanomaterial by applying the principles of green chemistry.


2021 ◽  
Author(s):  
Emusani Ramya

Simple green synthesis of metal nanoparticles (Ag NPs) was prepared by using Raphanussativus leaf extract. This extract acts as reduce and stabilizing agent. The formation of silver NPs was confirmed and characterized by XRD, UV–visible absorption spectrum, TEM, and FTIR. The luminescence enhancement and quenching of Eu3+and Sm3+ ions were observed in the presence of silver NPs. The luminescence enhancement is owing to arise in the electric-dipole transition with alteration of the field around Ln3+ ions. Nonlinear studies in femtosecond (fs) and picosecond (ps) time scales have been studied by using the Z-scan technique. Third-order nonlinear optical susceptibility of silver nanoparticles was obtained with Degenerate Four-Wave Mixing (DFWM) in the fs regime. The lifetimes of lanthanum complexes were increased by the concentration of silver NPs and decreased for further silver. The high enhanced luminescence and nonlinear studies of green synthesized silver nanoparticles can be used in optics and bio applications.


Author(s):  
K.K. Gupta ◽  
Neha Kumari ◽  
Neha Sinha ◽  
Akruti Gupta

Biogenic synthesis of silver nanoparticles synthesized from Hymenocallis species (Spider Lilly) leaf extract was subjected for investigation of its antimicrobial property against four bacterial species (E. coli, Salmonella sp., Streptococcus sp. & Staphylococcus sp.). The results revealed that synthesized nanoparticles solution very much justify the color change property from initial light yellow to final reddish brown during the synthesis producing a characteristics absorption peak in the range of 434-466 nm. As antimicrobial agents, their efficacy was evaluated by analysis of variance in between the species and among the different concentration of AgNPs solution, which clearly showed that there was significant variation in the antibiotic property between the four different concentrations of AgNPs solution and also among four different species of bacteria taken under studies. However, silver nanoparticles solution of 1: 9 and 1:4 were proved comparatively more efficient as antimicrobial agents against four species of bacteria.


2020 ◽  
Vol 21 (11) ◽  
pp. 1129-1137 ◽  
Author(s):  
Somayeh Mirsadeghi ◽  
Masoumeh F. Koudehi ◽  
Hamid R. Rajabi ◽  
Seied M. Pourmortazavi

Background: Herein, we report the biosynthesis procedure to prepare silver nanoparticles as reduction and capping agents with the aqueous plant extract of Perovskia abrotanoides. Methods: The therapeutic application of silver nanoparticles entirely depends on the size and shape of the nanoparticles therefore, their control during the synthesis procedure is so important. The effects of synthesis factors, for example, silver ion concentration, the mass of plant extract, reaction time and extraction temperature, on the size of silver particles were considered and optimized. Several analytical methods were used for the characterization of silver NPs including FT-IR and UV–Vis spectrophotometer, XRD and SEM. Results: The results showed that the mean size of the silver particles was about 51 nm. Moreover, the antibacterial properties of biosynthesized silver NPs were investigated by the minimum inhibitory concentration, minimum bactericidal concentration, and Well-diffusion tests. The minimum inhibitory concentration/ minimum bactericidal concentration values of silver NPs and aqueous plant extract versus Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (E. coli) were 3.03/0.00, 1.20/0.01, 3.06/0.00, 0.98/1.04, 1.00/0.05 and 1.30/0.03 (mg/mL), respectively. Conclusion: The antimicrobial activity study displayed that the synthesized silver nanoparticles by plant extract have better antimicrobial properties compared to aqueous plant extract of Perovskia abrotanoides.


2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


Sign in / Sign up

Export Citation Format

Share Document