scholarly journals An in vitro Evaluation of Friction Characteristics of Conventional Stainless Steel and Self-ligating Stainless Steel Brackets with different Dimensions of Archwires in Various Bracket–archwire Combination

2017 ◽  
Vol 18 (8) ◽  
pp. 660-664 ◽  
Author(s):  
UB Rajasekaran ◽  
Shailesh Sandbhor ◽  
M Mohamed Ramees ◽  
Esther A Abraham

ABSTRACT Aim The purpose of this research is to compare the frictional attributes of stainless steel conventional brackets and selfligating stainless steel brackets with different dimensions of archwires. Materials and methods The test was carried with two sets of maxillary brackets: (1) Conventional stainless steel (Victory Series), (2) stainless steel self-ligating (SmartClip) without first premolar brackets. Stainless steel, nickel–titanium (NiTi), and beta-Ti which are the types of orthodontic wire alloys were tested in this study. To monitor the frictional force, a universal testing machine (Instron 33R 4467) that comprises 10 kg tension load cell was assigned on a range of 1 kg and determined from 0 to 2 kg, which allows moving of an archwire along the brackets. One-way analysis of variance was used to test the difference between groups. To analyze the statistical difference between the two groups, Student's t-test was used. Results For Victory Series in static friction, p-value was 0.946 and for kinetic friction it was 0.944; at the same time for SmartClip, the p value for static and kinetic frictional resistance was 0.497 and 0.518 respectively. Hence, there was no statistically significant difference between the NiTi and stainless steel archwires. Conclusion It is concluded that when compared with conventional brackets with stainless steel ligatures, self-ligating brackets can produce significantly less friction during sliding. Beta-Ti archwires expressed high amount of frictional resistance and the stainless steel archwires comprise low frictional resistance among all the archwire materials. Clinical significance In orthodontics, frictional resistance has always had a major role. Its ability to impair tooth movement leads to the need for higher forces to move the teeth and it extends the treatment time which results in loss of posterior anchorage. Friction in orthodontics is related with sliding mechanics when a wire is moving through one or a series of bracket slots. How to cite this article Sridharan K, Sandbhor S, Rajasekaran UB, Sam G, Ramees MM, Abraham EA. An in vitro Evaluation of Friction Characteristics of Conventional Stainless Steel and Selfligating Stainless Steel Brackets with different Dimensions of Archwires in Various Bracket–archwire Combination. J Contemp Dent Pract 2017;18(8):660-664.

2019 ◽  
Vol 53 (2) ◽  
pp. 117-125
Author(s):  
Jayanti Choudhary ◽  
B Shashikumar ◽  
Anand K Patil

Aims: This study aimed to evaluate and compare the effect of tea tree oil (TTO) mouthwash and chlorhexidine (CHX) mouthwash on frictional resistance. Settings and Design: In vitro. Materials and Methods: In total, 60 extracted premolars were mounted on a custom-made acrylic fixture. These 60 premolars were randomly divided into 3 groups of 20 each, on which 0.022″ × 0.028″ slot MBT stainless steel brackets were bonded and 0.019″ × 0.025″ rectangular stainless steel wire was ligated with an elastomeric module. The 3 groups included a control group where the samples were immersed in artificial saliva and 2 experimental groups immersed in 0.2% CHX and TTO mouthwash, respectively, for 1.5 hours. Postimmersion static frictional resistance was evaluated on a universal testing machine at crosshead speed of 0.5 mm/min. Statistical Analysis Used: Tukey’s post hoc procedure. Results: This study showed a statistically significant difference in the frictional resistance between saliva and CHX groups and CHX and TTO groups ( P < .05). No statistically significant difference was observed between saliva and TTO groups ( P > .05). The frictional resistance was more in the CHX mouthwash group than in the TTO mouthwash group. Conclusions: Frictional resistance was lesser in the TTO mouthwash than in the CHX mouthwash. Based on this result, TTO mouthwash can be used instead of CHX mouthwash as an oral hygiene aid in patients with orthodontic treatments.


2014 ◽  
Vol 4 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Vinit Singh ◽  
Swati Acharya ◽  
Satyabrata Patnaik ◽  
Smruti Bhusan Nanda

Introduction: During sliding mechanics, frictional resistance is an important counterforce to orthodontic tooth movement; whichmust be controlled to allow application of light continuous forces.Objective: To investigate static and kinetic frictional resistance between three orthodontic brackets: ceramic, self-ligating, andstainless steel, and three 0.019×0.025” archwires: stainless steel, nickel-titanium, titanium-molybdenum.Materials & Method: The in vitro study compared the effects of stainless steel, nickel-titanium, and beta-titanium archwires onfrictional forces of three orthodontic bracket systems: ceramic, self-ligating, and stainless steel brackets. All brackets had 0.022”slots, and the wires were 0.019×0.025”. Friction was evaluated in a simulated half-arch fixed appliance on a testing machine. Thestatic and kinetic friction data were analyzed with 1-way analysis of variance (ANOVA) and post-hoc Duncan multiple rangetest.Result: Self-ligating (Damon) brackets generated significantly lower static and kinetic frictional forces than stainless steel (Gemini)and ceramic brackets (Clarity). Among the archwire materials, Beta-titanium showed the maximum amount of frictional forceand stainless steel archwires had the lowest frictional force.Conclusion: The static and kinetic frictional force for stainless steel bracket was lowest in every combination of wire.


2015 ◽  
Vol 03 (02) ◽  
pp. 080-084
Author(s):  
Vijay Singh ◽  
Poonam Bogra ◽  
Saurabh Gupta ◽  
Navneet Kukreja ◽  
Neha Gupta

AbstractFracture resistance of endodontically treated teeth restored with post. Aims: This study aims to compare the fracture resistance of endodontically treated teeth restored with resin fiber and stainless steel post. Commercially available prefabricated resin fiber post(Dentsply Maillefer Easy Post), prefabricated stainless steel post(Coltene/Whaledent Parapost) were used. Methods and Material: Forty five maxillary central incisors were obturated and divided into 3 groups: Control Group (Group I) without any post (n = 15), Resin Fiber Post Group (Group II) (n = 15) and Stainless Steel Post Group (Group III) (n = 15). In all Groups except control group, post space was prepared; a post was cemented, and a core build-up was provided. All the specimens were subjected to compressive force under a universal testing machine until fracture. Statistical analysis used: The results were analyzed using the variable analysis test (ANOVA). Results: One-way analysis of variance revealed significant difference among test groups. The control group demonstrated highest fracture resistance (925.2183 N), followed by the resin fiber post group (486.7265 N) and stainless steel post group (423.539N). Conclusions: Teeth restored with resin fiber post showed higher fracture resistance values than prefabricated stainless steel post.


2016 ◽  
Vol 45 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Jurandir Antonio BARBOSA ◽  
Carlos Nelson ELIAS ◽  
Roberta Tarkany BASTING

Abstract Introduction The Barbosa Versatile bracket design may provide lower frictional force and greater sliding. However, no in vitro studies have shown its sliding mechanisms and frictional resistance, particularly in comparison with other self-ligating or conventional brackets. Objective To compare the frictional resistance among self-ligating brackets (EasyClip/ Aditek, Damon MX/ Ormco and In Ovation R/ GAC); conventional brackets (Balance Roth/ GAC, and Roth Monobloc/ Morelli); and Barbosa Versatile bracket (Barbosa Versatile/ GAC) with different angles and arch wires. Material and method Brackets were tested with the 0.014", 0.018", 0.019"×0.025" and 0.021"×0.025" stainless steel wires, with 0, 5, 10, 15 and 20 degree angulations. Tying was performed with elastomeric ligature for conventional and Barbosa Versatile brackets, or with a built-in clip system of the self-ligating brackets. A universal testing machine was used to obtain sliding strength and friction value readouts between brackets and wires. Result Three-way factorial ANOVA 4×5×6 (brackets × angulation × wire) and Tukey tests showed statistically significant differences for all factors and all interactions (p<0.0001). Static frictional resistance showed a lower rate for Barbosa Versatile bracket and higher rates for Roth Monobloc and Balance brackets. Conclusion The lowest frictional resistance was obtained with the Barbosa Versatile bracket and self-ligating brackets in comparison with the conventional type. Increasing the diameter of the wires increased the frictional resistance. Smaller angles produced less frictional resistance.


2016 ◽  
Vol 6 (1) ◽  
pp. 19-23
Author(s):  
Amol Mhatre ◽  
VK Ravindranath ◽  
Sachin Doshi ◽  
Girish Karandikar ◽  
PS Vivek

ABSTRACT Aim The aim of this in vitro study was to investigate the efficiency of the new generation of elastomeric ligatures with innovative designs (SlideTM and AlastiKTM Easy-to-Tie) in reducing frictional resistance (FR) during sliding mechanics as compared with conventional ligatures. Materials and Methods Sixty ligature samples divided into four groups were used for the study. Group A: QuiK-StiK™ (3M Unitek, Monrovia, CA, USA), Group B: AlastiK™ Easy-to-Tie (3M Unitek, Monrovia, CA, USA), Group C: Slide™ (Leone, Firenze, Italy), and Group D: SS ligatures 0.010” (Libral Traders, New Delhi, India). Universal Testing Machine, Instron was used for measuring FR at the bracket-wire interface. Results There was statistically significant difference in FR among all the four groups of ligatures tested (p < 0.001). Slide ligatures produced the least amount of FR followed by SS ligatures, Easy-to-Tie, and QuiK-StiK in the increasing order of the FR values registered. Conclusion SlideTM ligatures may represent a valid alternative to passive self-ligating brackets when minimal amount of friction is desired. Angulation introduced into the elastomeric ligatures reduces the friction in comparison to conventional elastomeric ligatures. How to cite this article Vivek PS, Ravindranath VK, Karandikar G, Doshi S, Mhatre A, Sonawane M. Frictional Characteristics of the Newer Low-friction Elastomeric Ligatures. J Contemp Dent 2016;6(1):19-23.


2020 ◽  
Vol 54 (3) ◽  
pp. 203-213
Author(s):  
Subrat Kumar Sahany ◽  
G. Sreejith Kumar

Background: An understanding of bracket slot–archwire interface is imperative for biomechanical effectiveness in orthodontic sliding mechanics and hence the aim of the study is to evaluate frictional properties of lingual self-ligating brackets comparing with conventional lingual and labial self-ligating brackets using three different archwire alloys in various environments. Materials and Methods: This in vitro study compared the frictional force of labial and lingual self-ligating and conventional lingual brackets with stainless steel, TMA, and Cr-Co alloy archwires of 0.017” × 0.025” dimension in dry and wet conditions. Frictional forces were evaluated in a simulated half arch fixed appliance using a testing machine. Static and kinetic friction were measured and analyzed by one-way analysis of variance (ANNOVA) test and post hoc Duncan multiple range test. The effects of brackets and archwires in dry and wet conditions were analyzed by three-way variance (ANNOVA) test. Result: The maximum frictional forces were observed with labial self-ligating brackets followed by lingual conventional brackets and the least by lingual self-ligating brackets. Of all the wires tested, TMA wires had the maximum frictional forces followed by Co-Cr and stainless steel. In both conditions, the values were non-significant with all bracket–wire combinations except with Co-Cr and TMA wires. Conclusions: Varied amount of frictional force was shown by the brackets and wires with highest by labial self-ligating bracket, followed by lingual conventional and lingual self-ligating brackets. TMA wires experienced higher friction followed by Co-Cr and stainless steel with minimum friction.


2013 ◽  
Vol 14 (3) ◽  
pp. 488-495 ◽  
Author(s):  
S Chidambaram ◽  
M Vijay ◽  
D Praveen Kumar Varma ◽  
K Baburam Reddy ◽  
D Ravindranath ◽  
...  

ABSTRACT Aim The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Materials and methods Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. Results MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. Conclusion MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinical significance Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM brackets, more precise manufacturing technique should be improved to get a more smoother surface finish. How to cite this article Varma DPK, Chidambaram S, Reddy KB, Vijay M, Ravindranath D, Prasad MR. Comparison of Galvanic Corrosion Potential of Metal Injection Molded Brackets to that of Conventional Metal Brackets with Nickel-Titanium and Copper Nickel-Titanium Archwire Combinations. J Contemp Dent Pract 2013;14(3):488-495.


2017 ◽  
Vol 1 ◽  
Author(s):  
Annisa Mayang Rusdi ◽  
Lasminda Syafiar ◽  
Astrid Yudhit

<p class="AbstractContent"><strong>Objective:</strong> The purpose of this study was to evaluate transverse strength of heat cured acrylic resin after immersed in 0,2% chlorhexidine gluconate mouthwash for 15, 30, 45, and 60 minutes.</p><p class="AbstractContent"><strong>Methods:</strong> This was an experimental laboratory study with posttest only group design. The samples were heat cured acrylic resin plate with size 65mm x 10mm x 2,5mm. Polymerization of the heat cured acrylic was done by water bath (74 °C for 2hrs followed by 100 °C for 1hr). Totally 30 samples were prepared and divided into 5 groups (n=6) which are group I as control, and others were immersed in 0, 2% chlorhexidine gluconate, group II (15 minutes), group III (30 minutes), group IV (45 minutes) and group V (60 minutes) respectively. The transverse strength was test using Torsee’s Universal Testing machine, Japan with crosshead 1/10 mm/seconds. The data was statistically analyzed using one way ANOVA (p≤0,005).</p><p class="AbstractContent"><strong>Results:</strong> Means and Standard deviation of Transverse strength were 92.382±11.786 N/mm2, 92.186±13.349 N/mm2,92.578±12.492 N/mm2, 92.382±13.939 N/mm2, and 91.989±12.285 N/mm2 for group I, II, III, IV, and V respectively. Statistic analyzed showed no significant difference among groups with p value= 1,000 (p &lt; 0, 05).</p><p class="AbstractContent"><strong>Conclusion:</strong> The immersion in 0, 2% chlorhexidine gluconate mouthwash at different period does not changed transverse strength of heat cured acrylic resin.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Amanpreet Singh Natt ◽  
Amandeep Kaur Sekhon ◽  
Sudhir Munjal ◽  
Rohit Duggal ◽  
Anup Holla ◽  
...  

Aim. To compare and evaluate the static frictional resistance offered by the four different types of ligation methods in both dry and wet conditions and at different durations when immersed in artificial saliva.Material and Methods. Alastik Easy to Tie modules, Super Slick Mini Stix elastomeric modules, Power “O” modules, and 0.009″Stainless Steel ligatures were used to compare the static friction using maxillary canine and premolar Preadjusted Edgewise brackets with 0.022″× 0.028″slot and 0.019″× 0.025″stainless steel wires.Results. The mean frictional resistance for Alastik modules was the lowest and that of Stainless Steel ligatures was found to be highest among the four groups compared and the difference among the four groups was statistically significant (P<0.005). The mean static frictional resistance in all groups under dry conditions was lower than that under wet conditions. No statistical significant differences were found when the groups were compared at different time periods of immersion in artificial saliva.Conclusion. This study concludes that the Alastik modules showed the lowest mean static frictional forces compared to any other ligation method, though no significant difference was found for different time periods of immersion in the artificial saliva.


2021 ◽  
Vol 14 (1) ◽  
pp. 61-67
Author(s):  
Prathibha Nandagiri ◽  
◽  
Mamidi Praveen ◽  
Shikha Singh ◽  
Monika Singh ◽  
...  

Typically, prosthodontists adjust ceramic restorations glazed surface by grinding prior to insertion. Such alterations of surfaces are necessary for the correction of occlusal interferences. We aimed to evaluate and compare the change in flexural strength of ceramic surfaces after re-glazing and polishing. This study included 40 samples of ceramic blocks that were fabricated and glazed, and then fired in accordance with the manufacturer’s recommendations. The sample was randomly divided into four groups of 10 samples each. The first group was the control group with unaltered glazed samples. The second group was abraded with an extra-fine diamond bur followed by re-glazing, and the other two groups were polished with two commercially available polishing kits after abrading them with an extra-fine diamond bur. The samples were tested for their flexural strength using a universal testing machine. On the application of the F test on the means of all the groups, a value greater than 0.05 was found, which meant that there is no statistically significant difference in flexural strength values between the groups (P-value>0.05). Since the flexural strength values of the polished group were comparable to the other groups, polishing can be used instead of re-glazing for ceramic restorations. This reduces an additional clinical appointment for the patient and saves working time.


Sign in / Sign up

Export Citation Format

Share Document