Investigation on the corrosion resistance of laser cladding Fe-based alloy coating against molten zinc

CORROSION ◽  
10.5006/3877 ◽  
2022 ◽  
Author(s):  
Qian Wang ◽  
Liang Zhang ◽  
Junwei Zhang

In this paper, laser cladding technology was used to prepare a Fe-based coating on H13 steel substrate and its corrosion behavior in molten zinc was studied. The results show that laser-cladding Fe-based coating can effectively protect the substrate from the corrosion of molten zinc, which is mainly related to its microstructure. The typical microstructure of the coating is composed of α-(Fe, Cr) solid solution matrix and CrFeB eutectic phases continuously distribute around the matrix. When molten zinc contacts with the surface of the coating, it corrodes the α phase matrix preferentially and CrFeB eutectic phases with better corrosion resistance interweave with each other to form a three-dimensional skeletal structure, which can play the role of diffusion barrier and slow down the diffusion rate of liquid zinc. The corrosion by molten zinc leads to the formation of a transition layer and an outer corrosion layer above the coatings. With the prolongation of the corrosion time, a large number of micro cracks are generated inside the transition layer and fracture gradually occurs under the action of thermal stress. The partial spalling of the transition layer and the corrosion of α phase matrix occur at the same time, making the corrosion depth of the coating increase continuously. However, the dense corrosion layer above the coating and the dispersed boride fragments can still function as a barrier to the inward diffusion of molten zinc.

2016 ◽  
Vol 63 (3) ◽  
pp. 171-176 ◽  
Author(s):  
Xiaodong Zhang ◽  
Xiaohua Jie ◽  
Liuyan Zhang ◽  
Song Luo ◽  
Qiongbin Zheng

Purpose This paper aims to discuss that a WC/Co-Cr alloy coating was applied to the surface of H13 steel by laser cladding. Design/methodology/approach The oxidation behavior of the WC/Co-Cr alloy coating at 600°C was investigated by comparing it with the performance of the steel substrate to better understand the thermal stability of H13 steel. Findings The results showed that the WC/Co-Cr alloy coating exhibited better high-temperature oxidation resistance and thermal stability than did uncoated H13 steel. The coated H13 steel had a lower mass gain rate and higher microhardness than did the substrate after different oxidation times. Originality/value The WC/Co-Cr alloy coating was composed of e-Co, CW3, Co6W6C, Cr23C6 and Cr7C3; this mixture offered good thermal stability and better high-temperature oxidation resistance.


2019 ◽  
Vol 66 (3) ◽  
pp. 352-359
Author(s):  
Li Jiahong ◽  
Kong Dejun

Purpose The purpose of this paper is to improve the salt spray corrosion and electrochemical corrosion performances of H13 hot work mould steel, Cr–Ni coatings with the different Cr and Ni mass ratios are fabricated using a laser cladding (LC), which provides an experimental basis for the surface modification treatment of H13 steel. Design/methodology/approach Cr–Ni coatings with the different Cr and Ni mass ratios were firstly fabricated on H13 hot work mould steel using a laser cladding (LC). The salt spray corrosion (SSC) and electrochemical corrosion performances of Cr–Ni coatings in 3.5 Wt.% NaCl solution were investigated to analyze the corrosion mechanism, and the effect of mass ratios of Cr and Ni on their corrosion mechanism was discussed. Findings The laser cladded Cr–Ni coatings with the different Cr and Ni mass ratios are composed of Cr–Ni compounds, which are metallurgically combined with the substrate. The SSC resistance of Cr–Ni coating with the Cr and Ni mass ratios of 24:76 is the highest. The electrochemical corrosion resistance of Cr–Ni coating with the Cr and Ni mass ratio of 24:76 is the best among the three kinds of coatings. Originality/value In this study, the corrosion resistance of laser cladded Cr–Ni coatings with the Cr and Ni mass ratios of 17: 83, 20: 80 and 24: 76 was first evaluated using salt spray corrosion (SSC) and electrochemical tests, and the effect of mass ratios of Cr and Ni on their corrosion mechanism was discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Nga Pham Thi-Hong

Laser cladding of Co50 alloy coating and Co50 composite coatings doped with 10, 20, and 30 wt.% TiC particles was performed on the H13 steel surface. The effects of TiC concentration on the phase composition, microstructure, and microhardness of the coatings were studied. The results indicated that, in 10% TiC coating, the “bright band” is a quite flat-growth tissue, while with 20% TiC, the “white bright band” contains a large amount of black TiC particles. The composite coating Co50, 10% TiC, and 20% TiC samples can clearly distinguish the cladding zone, bonding zone, and heat-affected zone, and a good metallurgical bond is formed between the coating and the substrate. The 30% TiC coating and the substrate are not well bonded, which is attributed to the high TiC content in the coating; however, it has the best surface morphology, and there is no porosity on the surface. 10% TiC coatings have poor surface quality, show a spraying material phenomenon on two side edges which is quite serious, and a lot of porosity on the surface of the coating. In addition, 10% TiC coating includes the original TiC particles and primary TiC particles that are precipitated in situ from the liquid phase during solidification; 20% TiC coating indicates a large amount of TiC in the form of cross petals and twigs, and the figure points out that TiC exists like a large number of diffusely distributed spherical structures in the 30% TiC coating. The coatings of TiC/Co composite with less than 20% TiC showed good metallurgical bonding characteristics with the H13 steel surface.


2015 ◽  
Vol 42 (s1) ◽  
pp. s103003
Author(s):  
邹朋津 Zou Pengjin ◽  
董刚 Dong Gang ◽  
王梁 Wang Liang ◽  
姚建华 Yao Jianhua

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 915 ◽  
Author(s):  
Kaijin Huang ◽  
Lin Chen ◽  
Xin Lin ◽  
Haisong Huang ◽  
Shihao Tang ◽  
...  

In order to improve the wear and corrosion resistance of an AZ91D magnesium alloy substrate, an Al0.5CoCrCuFeNi high-entropy alloy coating was successfully prepared on an AZ91D magnesium alloy surface by laser cladding using mixed elemental powders. Optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction were used to characterize the microstructure of the coating. The wear resistance and corrosion resistance of the coating were evaluated by dry sliding wear and potentiodynamic polarization curve test methods, respectively. The results show that the coating was composed of a simple FCC solid solution phase with a microhardness about 3.7 times higher than that of the AZ91D matrix and even higher than that of the same high-entropy alloy prepared by an arc melting method. The coating had better wear resistance than the AZ91D matrix, and the wear rate was about 2.5 times lower than that of the AZ91D matrix. Moreover, the main wear mechanisms of the coating and the AZ91D matrix were different. The former was abrasive wear and the latter was adhesive wear. The corrosion resistance of the coating was also better than that of the AZ91D matrix because the corrosion potential of the former was more positive and the corrosion current was smaller.


CORROSION ◽  
10.5006/2280 ◽  
2017 ◽  
Vol 73 (8) ◽  
pp. 942-952 ◽  
Author(s):  
Xuemei Ouyang ◽  
Guopeng Chen ◽  
Fucheng Yin ◽  
Ye Liu ◽  
Manxiu Zhao

The effect of Mo on the microstructure of as-cast Fe-3.5 B alloys and their corrosion behavior in molten zinc have been investigated. Experimental results show that the as-cast Fe-B alloys with molybdenum addition are mainly composed of α-Fe, Fe2B, FeMo2B2, and metastable Fe3B phases. Corrosion tests show that the Fe-3.5 B alloy with 8.0 wt% added molybdenum has the highest corrosion resistance in molten zinc mainly because the alloy still maintains the reticular structure of boride and improves its thermal stability. When the molybdenum content exceeds 8.0 wt%, the τ-FeMo2B2 + α-Fe eutectic microstructure destroys the reticular structure of the Fe2B phase, leading to reduction in the corrosion resistance of the as-cast Fe-B alloys. Four kinds of corrosion products (δp, δk, ζ, and FeB) were found in the corrosion layers. The corrosion mechanism of Fe-3.5 B alloys with various added molybdenum contents includes the following processes: the preferential corrosion of α-(Fe, Mo), the formation of typical Fe-Zn compounds, the transformation of (Fe, Mo)3B and (Fe, Mo)2B into FeB, and the spalling of borides. The diffusion of molybdenum in the solid matrix cannot occur in the corrosion process. The corrosion depth of the corrosion layer did not follow a parabolic relationship strictly, maybe it caused by the spalling of the corrosion layer under the attack of the liquid zinc. The corrosion process is mainly controlled by the diffusion of liquid zinc atoms.


2018 ◽  
Vol 18 ◽  
pp. 19-26
Author(s):  
Nadjette Belhamra ◽  
Abd Raouf Boulebtina ◽  
Khadidja Belassadi ◽  
Abdelouahed Chala ◽  
Malika Diafi

The purpose of this paper was to investigate the effect of Al2O3 and TiO2 nanoparticles contents on structural proporties, microhardness and corrosion resistance of Zn-Ni alloy coationg. Zn-Ni, Zn-Ni-Al2O3 and Zn-Ni-TiO2 composite coatings were electrodeposited on steel substrate by direct current in sulphate bath.The structure of the coatings was studied by X-ray diffration and by scaning electron miroscopy. The results showed the appearance of Ni5Zn21 phases and that the incrorporation of Al2O3 and TiO2 in the Zn-Ni coating refined the crystal grain size.The corrosion performance of coating in the 0.6M NaCl as a corrisive solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy EIS methods. It was found that the incorporation of nanoparticules in Zn-Ni alloy coating have better corrosion resistance and the values of Rct and Zw increase, while the values of Cdl decrease with increasing of nanoparticules.


2011 ◽  
Vol 464 ◽  
pp. 686-689
Author(s):  
Cheng Yun Cui ◽  
Xi Gui Cui ◽  
Yong Kong Zhang ◽  
Qian Zhao ◽  
Jin Zhong Lu

Co-based alloy coating was cladded on T10 tool steel by the powder feeding and continuous CO2 laser. The results showed that compared to the unreinforced T10 tool steel substrate, the microhardness of the Co-based reinforced composite was significantly enhanced and the maximum value was existed in the middle of the cladding coating. The corrosion resistance of the cladding coating was also improved. After cryogenic treatment, there is no obvious change for the structure of the cladding coating while the phase is transformed, leading to an increase in the microhardness of the cladding coating.


Sign in / Sign up

Export Citation Format

Share Document