Recent Progress in Room-Temperature Wafer Bonding Technology in Ambient Air

2021 ◽  
Vol 24 (1) ◽  
pp. 49-55
2019 ◽  
Vol 139 (7) ◽  
pp. 217-218
Author(s):  
Michitaka Yamamoto ◽  
Takashi Matsumae ◽  
Yuichi Kurashima ◽  
Hideki Takagi ◽  
Tadatomo Suga ◽  
...  

2020 ◽  
Vol 35 (6) ◽  
pp. 630-645
Author(s):  
Jia-ying Yang ◽  
Hao-jie Han ◽  
Hlib Repich ◽  
Ri-cheng Zhi ◽  
Chang-zhen Qu ◽  
...  

2021 ◽  
Author(s):  
Wenjing Li ◽  
Shun Li ◽  
Lihua Luo ◽  
Yichen Ge ◽  
Jiaqi Xu ◽  
...  

The catalyst-free oxidative cleavage of (Z)-triaryl-substituted alkenes bearing pyridyl motif with ambient air under irradiation of blue LED at room temperature has been developed. The reaction was facile and scalable,...


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


2016 ◽  
Vol 75 (9) ◽  
pp. 345-353 ◽  
Author(s):  
F. Kurz ◽  
T. Plach ◽  
J. Suss ◽  
T. Wagenleitner ◽  
D. Zinner ◽  
...  

1996 ◽  
Vol 446 ◽  
Author(s):  
A.J. Auberton‐Hervé ◽  
T. Barge ◽  
F. Metral ◽  
M. Bruel ◽  
B. Aspar ◽  
...  

AbstractThe advantage of SOI wafers for device manufacture has been widely studied. To be a real challenger to bulk silicon, SOI producers have to offer SOI wafers in large volume and at low cost. The new Smart‐Cut® SOI process used for the manufacture of the Unibond® SOI wafers answers most of the SOI wafer manufacturability issues. The use of Hydrogen implantation and wafer bonding technology is the best combination to get good uniformity and high quality for both the SOI and buried oxide layer. In this paper, the Smart‐Cut® process is described in detail and material characteristics of Unibond® wafers such as crystalline quality, surface roughness, thin film thickness homogeneity, and electric behavior.


MRS Advances ◽  
2016 ◽  
Vol 1 (43) ◽  
pp. 2907-2916 ◽  
Author(s):  
Shulong Lu ◽  
Shiro Uchida

ABSTRACTWe studied the InGaP/GaAs//InGaAsP/InGaAs four-junction solar cells grown by molecular beam epitaxy (MBE), which were fabricated by the novel wafer bonding. In order to reach a higher conversion efficiency at highly concentrated illumination, heat generation should be minimized. We have improved the device structure to reduce the thermal and electrical resistances. Especially, the bond resistance was reduced to be the lowest value of 2.5 × 10-5 Ohm cm2 ever reported for a GaAs/InP wafer bond, which was obtained by the specific combination of p+-GaAs/n-InP bonding and by using room-temperature wafer bonding. Furthermore, in order to increase the short circuit current density (Jsc) of 4-junction solar cell, we have developed the quality of InGaAsP material by increasing the growth temperature from 490 °C to 510 °C, which leads to a current matching. In a result, an efficiency of 42 % at 230 suns of the four-junction solar cell fabricated by room-temperature wafer bonding was achieved.


Sign in / Sign up

Export Citation Format

Share Document