scholarly journals Nano-Particles Additives as a Promising Trend in Tribology: A Review on their Fundamentals and Mechanisms on Friction and Wear Reduction

Evergreen ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 777-798
Author(s):  
Anthony Chukwunonso Opia ◽  
Mohd Kameil Abdul Hamid ◽  
Samion Syahrullail ◽  
Charles A. N. Johnson ◽  
Abu Bakar Rahim ◽  
...  
2021 ◽  
Vol 69 (2) ◽  
Author(s):  
Jia Ren ◽  
Kuiliang Gong ◽  
Gaiqing Zhao ◽  
Wenjing Lou ◽  
Xinhu Wu ◽  
...  

AbstractThe tribological performances of perfluoroalkylpolyethers (PFPE) with graphene (Gr), WS2, and the mixture of Gr and WS2 (Gr + WS2) before and after ultraviolet (UV), atomic oxygen (AO), and proton (Pr) irradiations were investigated. The composition and structure of PFPE, Gr, WS2, and Gr + WS2 were also analyzed to understand the effects of irradiation on the tribological behaviors of PFPE with additives. The results indicated that serious deterioration and degradation of PFPE took place and Gr was transformed to amorphous carbon after Pr irradiation, and surface oxidation of WS2 occurred under the irradiations of AO and Pr. Moreover, compared to PFPE and PFPE additized with Gr and WS2, PFPE with the addition of Gr + WS2 exhibited excellent friction and wear reduction before and after UV and AO irradiations. Graphical Abstract


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 732
Author(s):  
Yeoh Jun Jie Jason ◽  
Heoy Geok How ◽  
Yew Heng Teoh ◽  
Farooq Sher ◽  
Hun Guan Chuah ◽  
...  

This study investigated the tribological behaviour of Pongamia oil (PO) and 15W–40 mineral engine oil (MO) with and without the addition of graphene nanoplatelets (GNPs). The friction and wear characteristics were evaluated in four-ball anti-wear tests according to the ASTM D4172 standard. The morphology of worn surfaces and the lubrication mechanism of GNPs were investigated via SEM and EDS. This study also focuses on the tribological effect of GNP concentration at various concentrations. The addition of 0.05 wt % GNPs in PO and MO exhibits the lowest friction and wear with 17.5% and 12.24% friction reduction, respectively, and 11.96% and 5.14% wear reduction, respectively. Through SEM and EDS surface analysis, the surface enhancement on the worn surface by the polishing effect of GNPs was confirmed. The deposition of GNPs on the friction surface and the formation of a protective film prevent the interacting surfaces from rubbing, resulting in friction and wear reduction.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 66 ◽  
Author(s):  
Akshar Patel ◽  
Hong Guo ◽  
Patricia Iglesias

Contact friction between moving components leads to severe wear and failure of engineering parts, resulting in large economic losses. The lubricating ability of the protic ionic liquid, tri-[bis(2-hydroxyethylammonium)] citrate (DCi), was studied as a neat lubricant and as an additive in a mineral oil (MO) at various sliding velocities and constant load on an aluminum–steel contact using a pin-on-disk tribometer. Tribological tests were also performed at different concentrations of DCi. When DCi was used as an additive in MO, friction coefficient and wear volume were reduced for each sliding velocity, with a maximum friction and wear reduction of 16% and 40%, respectively, when 2 wt % DCi was added to MO at a sliding velocity of 0.15 m/s. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were also applied to analyze the wear mechanism of the interface lubricated by MO and DCi as additive.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 665
Author(s):  
Ning Kong ◽  
Jiaming Zhang ◽  
Jie Zhang ◽  
Hongbo Li ◽  
Boyu Wei ◽  
...  

Hot rolling of titanium alloy currently is carried out without lubrication because of the surface defects. In order to explore an effective lubrication scheme to reduce friction and wear during hot rolling of titanium alloy, a mixed graphene-incorporating lubricant has been proposed to study its lubrication performance and mechanism. The tribological experiments were carried out by ball-disk friction and wear tester under hot-rolling parameters. Scanning electron microscopy (SEM), X-ray energy spectrum analyzer (EDS), X-ray powder diffractometer (XRD) and Raman analysis were used to analyse the surface and cross-section of the wear marks on the samples after the tribological experiments. The results show that the friction coefficient decreases up to about 35% compared with tests under dry and lubricated conditions. The surface quality of the wear marks is improved significantly after applying the proposed lubricant. The graphene which is embedded in the phosphate film can be effectively applied as a lubricating material to strengthen the lubricating film with less combustion loss at high temperatures. A chemical- and mechanical-induced lubrication mechanism for the hot rolling of titanium sheets has been proposed due to the synergistic lubrication effect of the graphene, ZrO2 nano particles and phosphate. It is of great significance and potential value to apply this proposed lubricant as an effective way to reduce the wear, friction and oxidation during the hot-rolling process of titanium alloy.


1983 ◽  
Vol 27 ◽  
Author(s):  
L. E. Pope ◽  
F. G. Yost ◽  
D. M. Follstaedt ◽  
S.T. Picraux ◽  
J. A. Knapp

ABSTRACTFriction and wear tests on ion-implanted 440C stainless steel discs have been extended to high Hertzian stresses (≤ 3150 MPa). Implantation of 2 × 1015 Ti/mm2 (180–90 keV) and 2 × 1015 C/mm2 (30 keV) into 440C reduces friction (∼40%) and wear (> 80%) for Hertzian stresses as large as 2900 MPa, stresses which significantly exceed the yield strength of 440C (∼1840 MPa). Implantation of 4 × 1015 N/mm2 (50 keV) into 440C reduces friction slightly (∼25%) for Hertzian stresses > 1840 MPa but provides little or no reduction in wear. The amount of Ti remaining in the wear tracks correlates with the reductions in friction and wear. The implantation of Ti and C produces an amorphous surface layer which is believed to reduce friction and wear, whereas N implantation is expected to produce hard nitride particles which probably do not modify the hardness of 440C (KHN = 789) significantly.


2012 ◽  
Vol 619 ◽  
pp. 536-540
Author(s):  
Jia Qing Liang ◽  
Chang Sheng Li ◽  
Hua Tang ◽  
Yi Zhang ◽  
Wen Jing Li ◽  
...  

Nb1-xTixSe2(x=0~1) micro/nano-particles have been successfully prepared via solid-state thermal (750°C) reaction between microsized Nb, Ti with Se powders under seal environment in a seal quartz tube and characterization by X-ray diffractometer and scanning electron microscopy. It was found that the morphologies of the as-prepared products changed from microplates to micro-nanoparticles or aggregations composed of layer structure with the doping of Ti. And the amount of regular hexagonal microplates evidently reduced and nanoscaled particles increased with the increase of the contents of Ti dopant within a certain limit (1-20 atwt. %). The tribological properties of the as-prepared products as additives in paraffin were investigated by UMT-2 multispecimen tribotester. By the addition of Nb1-xTixSe2micro/nanoparticles in paraffin, the antiwear ability was improved and the friction coefficient was decreased. The paraffin with Nb1-xTixSe2micro/nanoparticles showed better tribological properties than that with pure NbSe2. A combination of the molecule-bearing mechanism of sliding friction, and fill in-repair work between the rubbing surfaces can explain the good friction and wear properties of Nb1-xTixSe2micro/nanoparticles.


2008 ◽  
Vol 368-372 ◽  
pp. 1092-1095 ◽  
Author(s):  
Han Ning Xiao ◽  
Ji Xiang Yin ◽  
Tetsuya Senda

Friction and wear tests of Al2O3 and SiC were conducted from room temperature to 1200°C both in air and in vacuum. Results show that the wear mechanism of Al2O3 is dominated by micro fracture, debris abrasive and delamination at temperatures below 600 °C, while is controlled by plastic deformation and recrystallization among 600~1200 °C, resulting in an obvious decrease of wear loss. The wear rate and surface microstructure of SiC are closely depending on the testing temperature, atmosphere and contact pressure. Oxidation of SiC at elevated temperatures plays important role on the wear rate. Self lubrication of both Al2O3 and SiC at high temperatures was observed, which is mainly depending on the formation of a specific surface layer composed of nano-particles or very thin glassy film.


Lubricants ◽  
2016 ◽  
Vol 4 (4) ◽  
pp. 36 ◽  
Author(s):  
Matthias Scherge ◽  
Roman Böttcher ◽  
Dominik Kürten ◽  
Dominic Linsler

Sign in / Sign up

Export Citation Format

Share Document