scholarly journals Cooling Load Estimation of a Multi-Storey Building: A Heat Transfer Approach

2021 ◽  
Vol 23 (05) ◽  
pp. 368-383
Author(s):  
𝑍𝑎𝑓𝑎𝑟 𝐴𝑙𝑎𝑚 ◽  
◽  
𝑀𝑜ℎ𝑑 𝐴𝑚𝑖𝑟 ◽  
𝑀𝑜ℎ𝑎𝑚𝑚𝑎𝑑 𝑀𝑎𝑛𝑠𝑜𝑜𝑟 ◽  
𝑀𝑜ℎ𝑎𝑚𝑚𝑎𝑑 𝐽𝑎𝑚𝑖𝑙 𝐴ℎ𝑚𝑎𝑑 ◽  
...  

The key objective of this work is to maintain the pre-determined inside conditions & to establish thermal equilibrium the prime rate at which heat needs to be detached from the space. Nowadays one of the most serious problems is environmental issues. For this problem, energy utilization by buildings and enterprises are responsible. Markets, Residential houses, commercial buildings, industry, and Infrastructure consume approximately 72% of the world’s energy. Roughly 60 % of a building’s total energy necessity is distributed to the plant of air-conditioning installed in a big complex or building that is air acclimatized. To limit energy utilization, accurate prediction of the cooling load are important. The elementary heat transfer concepts are used to manually calculate the cooling load of a multi-storey building. This method is derived from CLTD technique of cooling load estimation. We estimate the cooling load at the extreme conditions. So, we have taken the outside conditions as relative humidity 54% and 450C DBT for the month of May during summer. The average outside air velocity during this period is 1.67 m/s. The significance of this work is to show that, actual cooling load prediction results in less capital cost, investment and energy consumed. Thus, accuracy should be paramount when load calculation is being performed.

2019 ◽  
Vol 11 (11) ◽  
pp. 3186 ◽  
Author(s):  
Maoz Maoz ◽  
Saddam Ali ◽  
Noor Muhammad ◽  
Ahmad Amin ◽  
Mohammad Sohaib ◽  
...  

The achievement of sustainable energy goals warrants keen interest in promoting efficient buildings and renewable energy resources. Prominent among the energy-efficient building technologies is geothermal energy, which has a significant margin for improving energy utilization related to Heat, Ventilation, and Air Conditioning (HVAC). However, the efficient extraction of geothermal energy for HVAC applications requires stringent control of geometric parameters, boundary conditions, and environmental conditions. In this study a new approach has been devised to optimize the open loop Earth to Air Heat Exchanger (EAHE) system using a statistical optimization technique i.e., Response Surface Method (RSM). The study was conducted in the soil and weather conditions of Peshawar city in Pakistan. Parametric analysis was conducted for the three influencing variables, i.e., the pipe length, diameter, and air velocity using the EAHE model. The soil model predicts temperature in the range 20–26 °C for Peshawar at a depth above 3 m. Response Surface method was used to optimize the pipe length, diameter, and air velocity of the EAHE system. Analysis of Variance (ANOVA) indicates that all the three factors are significant. The EAHE system can effectively reduce the temperature by 15–18 °C and compensate the cooling load of single room for the parameters in the ranges of 50–70 m for the length, 0.18–0.25 m for the diameter, and 5–7 ms−1 for the air velocity. A regression equation is developed to predict the cooling load for any input values of the three influencing variables according to the weather and soil conditions.


2019 ◽  
Vol 7 (1) ◽  
pp. 12-22
Author(s):  
Ratu Mutia Fajarani ◽  
Yopi Handoyo ◽  
Raden Hengki Rahmanto

Cooling is the best preservation method than others because the food that has been cooled will remain fresh and will not experience a change in taste, color and aroma, besides all the activities that cause decay will stop so that the cooled food will last longer. (Hartanto, 1984). With the proper cooling engine planning, it can help with spatial adjustments, adjustments to loading, estimation of the power to be used, and budget plans. That is what is commonly called the cooling load calculation. Calculation of cooling load needs to be carried out before planning. This is necessary because the magnitude of the pending load is very influential on the selection of the cooling engine so that the freezing point for preserving food can be accurate. Pendiginan burden is influenced by external and internal factors. With the experimental method, it is obtained the results of the external cooling load as the external cooling load is 11.6 kW, the inner cooling load is 138.8 kW and the performance work coefficient (COP) is 2.


1978 ◽  
Vol 100 (2) ◽  
pp. 326-332 ◽  
Author(s):  
M. M. Elkotb ◽  
N. M. Rafat

A detailed investigation of the effect of the shape of an open combustion chamber for diesel engine on the air velocity pattern, and consequently, on the trajectory of the fuel spray is given in this paper. A theoretical model for the calculation of the spray penetration, taking into consideration the heat transfer to the droplet, the variation of the drag force with Reynolds number, and air velocity pattern, is suggested. The effect of some working conditions on the spray shape, trajectory, and penetration is experimentally studied to verify the theoretical model and to correlate the results of using different medium pressures, initial spray velocity, and injection angle on the magnitude of fuel spray diameter and spray volume.


Author(s):  
Minghui Hu ◽  
Dongsheng Zhu ◽  
Jialong Shen

It is requested to develop a microscale and high performance heat exchanger for small size energy equipments. The heat transfer performance of the water film on the condensing coils of the microscale evaporative condenser was studied for a single-stage compressed refrigeration cycle system. Under various operation conditions, the effects of the spray density and the head-on air velocity on the heat transfer performance of the water film were investigated. The results show that the microscale heat transfer coefficient of the water film αw increases with the increase of spray density and decreases with the increase of head-on air velocity. The results indicate that the key factor affecting the microscale heat transfer of the water film is the spray density. As the results, it is measured that the present device attained high heat transfer quantity despite the weight is light. In addition, via regression analysis of the experimental data, the correlation equation for calculating the microscale heat transfer coefficient of the water film was obtained, its regression correlation coefficient R is 0.98 and the standard deviation is 7.5%. Finally, the correlations from other works were compared. The results presented that the experimental correlation had better consistency with the correlations from other works. In general, the obtained experimental results of the water film heat transfer are helpful to the design and practical operation of the microscale evaporative condensers.


1988 ◽  
Vol 110 (4) ◽  
pp. 299-305 ◽  
Author(s):  
K. Chen

The design of a plane-type, bidirectional thermal diode is presented. This diode is composed of two vertical plates and several fluid-filled loops with their horizontal segments soldered to the vertical plates. This invention is simple in construction and low in cost. The direction of heat transfer in the invented thermal diode can be easily reversed. These features of the present invention make it very attractive to solar energy utilization. Natural convection analysis for thermosyphon operations was adopted for heat transfer calculations of the fluid-filled loops. A one-dimensional heat transfer analysis was employed to estimate the heat transfer rate and ratio of heat transfer rates of the diode under forward and reverse bias.


2012 ◽  
Vol 197 ◽  
pp. 216-220
Author(s):  
Zhong Chao Zhao ◽  
Rui Ye ◽  
Gen Ming Zhou

To solve the cooling problem in modern electronic device, a kind of heat pipe radiator was designed and manufactured in this paper. The heat transfer performance of heat pipe radiator and its relationship with air velocity were investigated by experimental method. The experimental results show that the heat pipe radiator can meet the temperature requirement of electronic device with the power range from 40W to 160W. To keep the operational temperature of electronic device with power of 160W under 75°C,the air velocity should be keep at 1.7m/s. The heat dissipation performance of heat pipe radiator was enhanced with the air velocity increased from 0.2m/s to 1.7m/s.for the electronic equipment with power of 160W.


Sign in / Sign up

Export Citation Format

Share Document