scholarly journals Antibiotic Resistance of Escherichia Coli Isolated from Lake Nainital, Uttarakhand State, India

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Neha Giri ◽  
Anchal Lodhi ◽  
Devendra Singh Bisht ◽  
Suvarna Bhoj ◽  
Deepak Kumar Arya

Researchers have encountered new challenges with the discovery of multiple drug resistance in microbes. Currently, multidrug resistant bacteria are considered a major public health concern and an emerging global epidemic. Presence of Escherichia coli in water is used as a faecal pollution measure. In this study E. coli isolates were collected from 20 sample collection sites at Lake Nainital. 20 E. coli isolates, 1 from each sample collection sites, were examined for their antibiotic response patterns against a panel of widely used 15 antibiotics. The result of this study showed 100% resistance to Penicillin G followed by Erythromycin (80%). All isolates (100%) were found susceptible for Gentamycin. The susceptibilities for Chloramphenicol and Co-trimoxazaole were found next to Gentamycin as 90 and 85% respectively. Multiple antibiotic resistance (MAR) index was also determined. 0.73 MAR index was observed as highest in 1 isolate. 13 out of 20 isolates had more than 0.2 MAR indices. The result reveals the origin of E. coli isolates from an area of high antibiotics use.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Mourouge Saadi Alwash ◽  
Hawraa Mohammed Al-Rafyai

Surface water contamination remains a major worldwide public health concern and may contribute to the dissemination of antibiotic-resistant bacteria. The Al-Hillah River in the city of Babylon Province, Iraq, diverts flows from the Euphrates River. Because of its importance in irrigation and population density, it faces several forced and unforced changes due to anthropogenic activities. To evaluate water quality, water samples were collected from three sites with different anthropogenic pressures along the Al-Hillah River. These samples were subjected to bacteriological analyses, i.e., total coliforms, Escherichia coli, and faecal enterococci. The phylogenetic groups of the E. coli isolates (n = 61) were typed by rapid PCR-based analyses. Representatives of each isolate were tested phenotypically for resistance to six classes of antibiotics and characterized according to their phylogenetic groups. The results demonstrated the highest resistance levels were to β-lactam antibiotics, followed by fosfomycin and aminoglycosides. Escherichia coli isolates belonging to phylogenetic groups A and B2 were the most common and were characterized by a higher prevalence of antibiotic resistance. This study is important for understanding the current conditions of the Al-Hillah River, as the data reveal a high prevalence of multiresistance among E. coli isolates circulating at the three sampling sites.


2019 ◽  
Vol 02 ◽  
pp. 97-104
Author(s):  
Kha H. N. Nguyen

In this study, a collection of 130 E. coli isolated from white-leg shrimp collected from three wet markets and two supermarkets in Ho Chi Minh City was analysed to examine their antibiotic resistance characteristics and the transferability of resistance markers. High levels of resistance to ampicillin, tetracyclines, trimethoprim/sulfamethoxazole, nalidixic acid and chloramphenicol were observed. The percentage of multiple drug resistance (4 to 10 tested antibiotics) was 73.8%. The multiple antibiotic resistance (MAR) index values of 0.4 to 0.73 (of each sample collection site) indicated that these isolates were exposed to high risk sources of contamination where antibiotics were commonly used. Conjugation experiments demonstrated the successful transfer of all or part of the resistance phenotypes of shrimp isolates to the human recipient strains


2016 ◽  
Vol 60 (9) ◽  
pp. 5223-5231 ◽  
Author(s):  
David Mantilla-Calderon ◽  
Muhammad Raihan Jumat ◽  
Tiannyu Wang ◽  
Pugalenthi Ganesan ◽  
Nada Al-Jassim ◽  
...  

ABSTRACTThe emergence of resistance to last-resort antibiotics is a public health concern of global scale. Besides direct person-to-person propagation, environmental pathways might contribute to the dissemination of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). Here, we describe the incidence ofblaNDM-1, a gene conferring resistance to carbapenems, in the wastewater of the city of Jeddah, Saudi Arabia, over a 1-year period.blaNDM-1was detected at concentrations ranging from 104to 105copies/m3of untreated wastewater during the entire monitoring period. These results indicate the ubiquity and high incidence ofblaNDM-1in the local wastewater. To track the bacteria carryingblaNDM-1, we isolatedEscherichia coliPI7, a strain of sequence type 101 (ST101), from wastewater around the Hajj event in October 2013. Genome sequencing of this strain revealed an extensive repertoire of ARGs as well as virulence and invasive traits. These traits were further confirmed by antibiotic resistance profiling andin vitrocell internalization in HeLa cell cultures. Given that this strain remains viable even after a certain duration in the sewerage, and that Jeddah lacks a robust sanitary infrastructure to fully capture all generated sewage, the presence of this bacterium in the untreated wastewater represents a potential hazard to the local public health. To the best of our knowledge, this is the first report of ablaNDM-1-positiveE. colistrain isolated from a nonnosocomial environment in Saudi Arabia and may set a priority concern for the need to establish improved surveillance for carbapenem-resistantE. coliin the country and nearby regions.


2020 ◽  
Vol 4 (3) ◽  
pp. 323-327
Author(s):  
Mamunu Abdulkadir SULAIMAN ◽  
H.S Muhammad ◽  
Aliyu Muhammad Sani ◽  
Aminu Ibrahim ◽  
Ibrahim Muhammad Hussain ◽  
...  

Multidrug resistance (MDR) exhibited by some strains of Escherichia coli may be due to acquiring mobile genetic element (R-plasmid) by the bacteria, or intrinsically induced by inappropriate use of antibiotics by the hosts.  Infection by such strains may result to prolonged illness and greater risk of death. The study evaluated the impact of curing on antibiotic resistance on selected clinical isolates of E. coli. Twenty clinical isolates of E. coli from our previous studies were re-characterized using conventional microbiological techniques. Antibiotic sensitivity testing was determined by disk diffusion method, MDR selected based on resistance to ≥ 2 classes of antibiotics. Multiple antibiotic resistance (MAR) index was determined as ratio of the number of antibiotic resisted to the total number of antibiotics tested and considered significant if ≥. 0.2. The isolates that showed significant MAR index were subjected to plasmid curing using acridine orange, thereafter, profiled for plasmid and the cured ones were re-tested against the antibiotics they initially resisted. Out of the 20 isolates, 19 (95%) were confirmed as E. coli, all (100%) of which were MDRs, which was highest against augmentin (78.9%) followed by amoxacillin (52.6%). However, after the plasmid curing only 6 (31.6%) out of the 19 isolates cured retained significant MAR index and the level of the significance had reduced drastically in 16 (84.2%) isolates. Conclusively, curing assay can completely eliminate R-plasmid acquired resistance. More studied on plasmid curing agents for possible augmentation of the agents into antibiotics may see the rise of successful antibiotic era again.


2019 ◽  
Vol 82 (3) ◽  
pp. 470-478 ◽  
Author(s):  
HUI CHENG ◽  
HAN JIANG ◽  
JIEHONG FANG ◽  
CHENG ZHU

ABSTRACT Our study was conducted to investigate the antibiotic susceptibility profiles, integrons and their associated gene cassettes (GCs), and insertion sequence common regions of Escherichia coli isolates from Penaeus vannamei collected at a large-scale freshwater shrimp farm in Zhejiang Province, People's Republic of China. A total of 182 E. coli isolates were identified from 200 samples. With the exception of imipenem, isolates were most commonly resistant to β-lactams, followed by tetracylines and sulfonamides. Fifty-two (28.6%) E. coli isolates were classified as multidrug resistant, and the patterns were highly diverse, with 29 types represented. The multiple-antibiotic resistance indices of the isolates were 0.17 to 0.56; 9.3% (17) of the 182 isolates were positive for class 1 integrons, 0.5% (1 isolate) was positive for class 2 integrons, and an insertion sequence common region 1 element was found upstream of the intI1 (integrase) gene in one of the intI1-positive isolates. Four GC arrays were detected in class 1 integrons, and one GC array was detected in class 2 integrons. Although the overall prevalence of antimicrobial-resistant bacteria in P. vannamei was lower than that previously reported for poultry and livestock farms in China, concerns about the inappropriate use of antibiotics and the transmission of antimicrobial-resistant bacteria in aquaculture were raised. Alternative approaches to reducing or replacing the use of antibiotics should be further studied.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


2017 ◽  
Vol 81 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Nahla O. Eltai ◽  
Elmoubasher A. Abdfarag ◽  
Hamad Al-Romaihi ◽  
Eman Wehedy ◽  
Mahmoud H. Mahmoud ◽  
...  

ABSTRACT Antibiotic resistance (AR) is a growing public health concern worldwide, and it is a top health challenge in the 21st century. AR among Enterobacteriaceae is rapidly increasing, especially in third-generation cephalosporins and carbapenems. Further, strains carrying mobilized colistin resistance (mcr) genes 1 and 2 have been isolated from humans, food-producing animals, and the environment. The uncontrolled use of antibiotics in food-producing animals is a major factor in the generation and spread of AR. No studies have been done to evaluate AR in the veterinary sector of Qatar. This study aimed at establishing primary baseline data for the prevalence of AR among food-producing animals in Qatar. Fecal samples (172) were obtained from two broiler farms and one live bird market in Qatar, and 90 commensal Escherichia coli bacteria were isolated and subjected to susceptibility testing against 16 clinically relevant antibiotics by using the E-test method. The results found that 81 (90%) of 90 isolates were resistant to at least one antibiotic, 14 (15.5%) of 90 isolates were colistin resistant, 2 (2.2%) of 90 isolates were extended-spectrum β-lactamase producers, and 2 (2.2%) of 90 isolates were multidrug resistant to four antibiotic classes. Extended-spectrum β-lactamase–producing E. coli and colistin-resistant isolates were confirmed by using double-disc susceptibility testing and PCR, respectively. Such a high prevalence of antibiotic-resistant E. coli could be the result of a long application of antibiotic treatment, and it is an indicator of the antibiotic load in food-producing animals in Qatar. Pathogens carrying AR can be easily transmitted to humans through consumption of undercooked food or noncompliance with hygiene practices, mandating prompt development and implementation of a stewardship program to control and monitor the use of antibiotics in the community and agriculture.


2017 ◽  
Vol 11 (1) ◽  
pp. 203-210 ◽  
Author(s):  
Reza Ranjbar ◽  
Mehrdad Sami

Background: Antimicrobial resistance is an important factor threatening human health. It is widely accepted that antibiotic resistant bacteria such as Escherichia coli (E. coli) released from humans and animals into the water sources, can introduce their resistance genes into the natural bacterial community. Objective: The aim of this study was to investigate the prevalence of blaTEM, blaCTX, blaSHV, blaOXA and blaVEB associated-antibiotic resistance among E. coli bacteria isolated from different water resources in Iran. Methods: The study contained all E. coli strains segregated from different surface water sources. The Kirby-Bauer method and combined discs method was determined in this study for testing antimicrobial susceptibility and strains that produced Extended-Spectrum Beta Lactamases (ESBL), respectively. DNA extraction kit was applied for genomic and plasmid DNA derivation. Finally the frequency of resistant genes including blaTEM, blaCTX, blaSHV, blaOXA and blaVEB in ESBL producing isolates were studied by PCR. Results: One hundred E. coli strains were isolated and entered in the study. The highest antibiotic resistance was observed on clindamycin (96%). Moreover, 38.5% isolates were ESBL producers. The frequency of different ESBLs genes were 37%, 27%, 27%, and 25% for blaTEM, blaCTX, blaSHV, and blaOXA, respectively. The blaVEB wasn’t found in any isolates. Conclusion: The study revealed a high prevalence of CTX-M, TEM, SHV and OXA genes among E. coli strains in surface water resources. In conclusion, these results raised a concern regarding the presence and distribution of these threatening factors in surface water sources and its subsequent outcomes.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3449
Author(s):  
Cristina-Mirabela Gaşpar ◽  
Ludovic Toma Cziszter ◽  
Cristian Florin Lăzărescu ◽  
Ioan Ţibru ◽  
Marius Pentea ◽  
...  

This study aimed to compare the antibiotic resistance levels of the indicator bacteria Escherichia coli in wastewater samples collected from two hospitals and two urban communities. Antimicrobial susceptibility testing was performed on 81 E. coli isolates (47 from hospitals and 34 from communities) using the disc diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Ten antibiotics from nine different classes were chosen. The strains isolated from the community wastewater, compared to those from the hospital wastewater, were not resistant to gentamicin (p = 0.03), but they showed a significantly higher susceptibility—increased exposure to ceftazidime (p = 0.001). Multidrug resistance was observed in 85.11% of the hospital wastewater isolates and 73.53% of the community isolates (p > 0.05). The frequency of the presumed carbapenemase-producing E. coli was higher among the community isolates (76.47% compared to 68.09%) (p > 0.05), whereas the frequency of the presumed extended-spectrum beta-lactamase (ESBL)-producing E. coli was higher among the hospital isolates (21.28% compared to 5.88%) (p > 0.05). The antibiotic resistance rates were high in both the hospital and community wastewaters, with very few significant differences between them, so the community outlet might be a source of resistant bacteria that is at least as important as the well-recognised hospitals.


Author(s):  
Dominique Tertigas ◽  
Gemma Barber

Antibiotic resistance is a pressing issue in the medical field today. It is important to understand the development of bacterial resistance to implement effective preventative measures against antibiotic resistant bacteria. This study investigated the rate at which Escherichia coli (E. coli), a common pathogen, developed resistance to streptomycin and doxycycline, as Oz et al. (2014) showed differing levels of resistance in E. coli to these two antibiotics. The development of antibiotic resistance was measured by adding E. coli to 96-well plates in the presence of increasing doses of doxycycline, streptomycin, or a combination treatment. Successive generations were added to the same treatments to see whether they would grow at higher concentrations of antibiotic. The change in minimum inhibitory concentration for streptomycin and doxycycline was determined as the bacteria became increasingly resistant to each antibiotic. The fastest rate of antibiotic resistance was observed for streptomycin, with doxycycline resistance exhibiting a slower rate of development. The rate of resistance development for the combination treatment was the slowest, potentially due to small differences in target domains. Some cross-resistance was also observed. This study provides a small-scale methodological basis and preliminary insight on antibiotic resistance trends for two antibiotic classes and a combination treatment.


Sign in / Sign up

Export Citation Format

Share Document