scholarly journals MOISTURE AND ECONOMICS STUDY BY THE EFFECT OF MULCHING AND METHODS OF IRRIGATION ON OKRA (HIBISCUS ESCULENTUS L. MOENCH)

2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Pratibha Dagore ◽  
Vinita Parte ◽  
Urvashi Markam ◽  
Anjana Kujur

Okra (Hibiscus esculentus L. Moench) or Lady’s finger is one of the important vegetables grown throughout the tropics and subtropics. It is one of the most important vegetable grown commercially almost during the year in India. Irrigation scheduling is considered as a vital component of water management to produce higher irrigation efficiency under any irrigation system, as excessive or sub-optimum irrigation both have detrimental effects on productivity parameters of okra (Aiyelaagbe and Ogbonnaya, 1996). Mulching is effective in reducing evaporation, conserving soil moisture and has been known to modify the hydrothermal regime of soil. The result of method of irrigation is found to be non significant due to continuous rainfall. Hence, there are no differences among the methods of irrigation. Mulching with plastic sheet in okra var. VRO-6 proved the best mulch practice which produced superior growth and yield attributing characters

2018 ◽  
Vol 10 (12) ◽  
pp. 4763 ◽  
Author(s):  
Tewodros Assefa ◽  
Manoj Jha ◽  
Manuel Reyes ◽  
Abeyou Worqlul

The agricultural system in Sub-Saharan Africa (SSA) is dominated by traditional farming practices with poor soil and water management, which contributes to soil degradation and low crop productivity. This study integrated field experiments and a field-scale biophysical model (Agricultural Policy Environmental Extender, APEX) to investigate the impacts of conservation agriculture (CA) with a drip irrigation system on the hydrology and water management as compared to the conventional tillage (CT) practice. Field data were collected from four study sites; Dangishita and Robit (Ethiopia), Yemu (Ghana), and Mkindo (Tanzania) to validate APEX for hydrology and crop yield simulation. Each study site consisted of 100 m2 plots divided equally between CA and CT practices and both had a drip irrigation setup. Cropping pattern, management practices, and irrigation scheduling were monitored for each experimental plot. Significant water savings (α = 0.05) were observed under CA practice; evapotranspiration and runoff were reduced by up to 49% and 62%, respectively, whereas percolation increased up to three-fold. Consequently, irrigation water need was reduced in CA plots by about 14–35% for various crops. CA coupled with drip irrigation was found to be an efficient water saving technology and has substantial potential to sustain and intensify crop production in the region.


2017 ◽  
pp. 44-54
Author(s):  
Zenaida Gonzaga ◽  
Warren Obeda ◽  
Ana Linda Gorme ◽  
Jessie Rom ◽  
Oscar Abrantes ◽  
...  

Okra or Lady’s finger, botanically known as Abelmoschus esculentus (L.) Moench, is a tropical and sub-tropical indigenous vegetable crop commonly grown for its fibrous, slimy, and nutritious fruits and consumed by all classes of population. It has also several medicinal and economic values. Despite its many uses and potential value, its importance is under estimated, under-utilized, and considered a minor crop and little attention was paid to its improvement. The study was conducted to evaluate the effects of different planting densities and mulching materials on the growth and yield of okra grown in slightly sloping area in the marginal uplands in Sta. Rita, Samar, Philippines. A split-plot experiment was set up with planting density as main plot and the different mulching materials as the sub-plot which were: unmulched or bare soil, rice straw, rice hull, hagonoy and plastic mulch. Planting density did not significantly affect the growth and yield of okra. Regardless ofthe mulching materials used, mulched plants were taller and yielded higher compared to unmulched plants. Moreover, the use of plastic mulch resulted to the highest total fruit yield. The results indicate the potential of mulching in increasing yield and thus profitability of okra production under marginal upland conditions.


2020 ◽  
Vol 1 (3) ◽  
pp. 85-95
Author(s):  
Nigora Egamberdieva ◽  

In the lower reaches of the Amu Darya, artificial irrigation was created on the basis of flood water management of the river. The first channels were wide and shallow. Saka was used for flood water management. Saka was invented by tazabagyabinces. Thechannels which derived from the Akchadarya Delta were strongly branched, and the main channels were derived from the Sarikamysh Delta


2021 ◽  
Author(s):  
Temitayo Abayomi Ewemoje ◽  
Habeeb Adedotun Alabi ◽  
Isaac Oladeji Lebi ◽  
Afeez Adewale ◽  
Sefiu Abiodun Tiamiyu ◽  
...  

2019 ◽  
Vol 4 (1) ◽  
pp. 2-14
Author(s):  
HANS BLEUMINK

Historical surface irrigation of pastures in the Dutch province of Noord-Brabant: visible traces of a failed experiment In the second half of the 19th century, some major changes occurred in the water management of the eastern and southern provinces of the Netherlands. Unlike the low-lying western parts of the Netherlands which were characterised by polders and had a long history of formal water boards, the higher eastern and southern parts of the Netherlands were characterized by brook systems and sandy soils, and had no centralised water boards until 1850. From the 1850s onward, water boards were introduced in these higher regions as well, and agronomical scientists and organisations like the Nederlandse Heidemaatschappij endeavoured for the modernisation of agricultural water management. One of their priorities was the introduction of modern forms of surface irrigation of pastures, in order to increase crop yields. In various places modern irrigation systems were constructed. From the 1900s onward, these systems were abandoned due to the introduction of new chemical fertilizers, among others. This article describes the construction and abandonment of one of these modern irrigation systems that was located in Liempde, in the province of Noord-Brabant. The local farmers were not interested in the new technique, and within a few years the system was transformed in a poplar plantation. Nowadays, the area is part of a nature reserve. Nonetheless, the global layout of the irrigation system is still visible.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1579 ◽  
Author(s):  
Ahmed Elshaikh ◽  
Shi-hong Yang ◽  
Xiyun Jiao ◽  
Mohammed Elbashier

This study aims to offer a comprehensive assessment of the impacts of policies and institutional arrangements on irrigation management performance. The case study, the Gezira Scheme, has witnessed a significant decrease in water management performance during recent decades. This situation led to several institutional changes in order to put the system on the right path. The main organizations involved in water management at the scheme are the Ministry of Irrigation & Water Resources (MOIWR), the Sudan Gezira Board (SGB), and the Water Users Associations (WUAs). Different combinations from these organizations were founded to manage the irrigation system. The evaluation of these organizations is based on the data of water supply and cultivated areas from 1970 to 2015. The measured data were compared with two methods: the empirical water order method (Indent) that considers the design criteria of the scheme, and the Crop Water Requirement (CWR) method. Results show that the MOIWR period was the most efficient era, with an average water surplus of 12% compared with the Indent value, while the most critical period (SGB & WUAs) occurred when the water supply increased by 80%. The other periods of the Irrigation Water Corporation (IWC), (SGB & MOIWR), and (WUAs & MOIWR) had witnessed an increase in water supply by 29%, 63%, and 67% respectively. Through these institutional changes, the percentage of excessive water supply jumped from 12% to 80%. Finally, the study provides general recommendations associated with institutional arrangements and policy adoption to improve irrigation system performance.


2016 ◽  
Vol 5 (4) ◽  
pp. 58
Author(s):  
Monika Ghimire ◽  
Art Stoecker ◽  
Tracy A. Boyer ◽  
Hiren Bhavsar ◽  
Jeffrey Vitale

<p class="sar-body"><span lang="EN-US">This study incorporates spatially explicit geographic information system and simulation models to develop an optimal irrigation system. The purpose of the optimized irrigation system was to save depleted ground water supplies. ArcGIS was used to calculate the area of potential irrigable soils, and EPANET (a hydrological simulation program) was used to calculate energy costs. Crop yield response functions were used to estimate the yield of cotton to the amount of irrigation and the accumulation of soil salinity over a 50-year period. Four irrigation designs (A, B, C, and D) were analyzed with different irrigation schedules.</span></p><p class="sar-body"><span lang="EN-US">Design A allowed all producers to irrigate simultaneously at 600 gallons per minute (gpm) or 2,271 liters per minute (lpm) while designs B and C divided the irrigable areas into two parts. Design D divided the areas into four parts to allow producers to irrigate one part at a time at 800 gpm (3,028 lpm). Irrigation scheduling not only lessened the water use and cost, but also amplified the profitability of the irrigation system. In design A, if all producers adopted 600 gpm (2,271 lpm) pivots and operated simultaneously, the cost of the 360,000 gpm (1363,000 lpm) pipeline would be prohibitive. In contrast, designs B, C, and D increased net benefits and lowered the breakeven price of cotton. The 50-year net present value for designs A, B, C, and D was profitable over 75, 70, 70, and 65 cents of cotton price per pound (454 g), respectively. Thus, this study endorses irrigation scheduling as a tool for efficient irrigation development and management, and increases water conservation.</span></p>


2017 ◽  
Vol 9 (2) ◽  
pp. 1170-1175 ◽  
Author(s):  
Ankush Ankush ◽  
Vikram Singh ◽  
S. K. Sharma

Drip irrigation technique has proved its superiority over other methods of irrigation due to direct application of water and nutrient in the vicinity of root zone. A field study was conducted to evaluate the effect of irrigation and fertigation scheduling through drip irrigation in tomato (Solanum lycopersicum L.) during Rabi season of 2015-16 at Rajasthan College of Agriculture, MPUAT, Udaipur. There were three irrigation levels and five fertilization levels in split-plot design with three replications. Nutrient content in plant and fruit was found higher under the application of drip irrigation at 100 % PE (I1) and at 100 % RDF through fertigation (F1). Maximum nutrient uptake by tomato i.e. nitrogen (166.83 kg ha-1), phosphorus (41.59 kg ha-1) and potassium (183.08 kg ha-1) was recorded with treatment combination of drip irrigation at 75 % PE (I2) + 75 % RDF through fertigation + 2 foliar spray of 1 % urea phosphate (F3). Similarly, significantly maximum yield and growth attributes i.e. fruit yield (201.25 q ha-1), plant height (67.43 cm) and number of branches (12.33) were registered with treatment combination of drip irrigation at 75 % PE and 75 % RDF through fertigation + 2 foliar spray of 1 % urea phosphate. Drip fertigation method has proved to be very significant in improving nutrient uptake which finally resulting in enhancement of growth and yield of tomato crop.


2021 ◽  
Author(s):  
Parveen Kumar ◽  
Amit Kumar

Pearl millet also called “poor man food” is known for its drought resistance, well adaptation to harsh conditions like soils with poor water holding capacity, low nutrient status, problematic soils, etc. Irrigation has been recognized as a basic necessity for sustaining high productivity of various crops. Moreover, it affects the crop yield directly as well as indirectly by increasing their response to other inputs including fertilizers and various management practices. It is well known that water deficit is one of the major abiotic factors limiting crop productivity in the semi-arid tropics. Out of the various production constraints; low productivity of pearl millet is mainly attributed to its cultivation under dry land conditions and improper water management under irrigated conditions. So application of irrigation water offers the scope for improving the quality as well as productivity of pearl millet. Therefore, to augment the productivity of the poor’s man crop, review of the research work related to irrigation scheduling and moisture conservation practices of pearl millet has been presented here for directing the future research.


Sign in / Sign up

Export Citation Format

Share Document