scholarly journals Influence of montmorillonite clay on the physical and mechanical properties of the ceramic mass

Author(s):  
S.A. Montaev ◽  
◽  
N.В. Adilova ◽  
B.T. Shakeshev ◽  
◽  
...  

The intensification of the growth of industrial production of building materials causes an urgent need for economical use of material and fuel and energy resources, especially in such an energy-and resource-intensive industry as the production of construction ceramics. To improve the physical and mechanical properties of building ceramics, to reduce energy consumption during drying, as well as to increase the strength indicators, pilot tests of the influence of bentonite clay w for obtaining face wall ceramics were carried out. The regularities of the structure and phase formation of the ceramic composition depending on the firing temperature have been established. Modification of the raw mixture with bentonite clay to assess the increase in strength by 20-30% with a general decrease in the firing temperature by 100-120 ° C.

2013 ◽  
Vol 834-836 ◽  
pp. 689-692
Author(s):  
Yi Guo Xue ◽  
Shu Cai Li ◽  
Nan Zhang

Nanotechnology provides a new method on modified cement. It introduces the research and application of nanocement situation and existing problems in the paper. The nanocement has better mechanical properties and durability than the current ordinary cement, and it is environmentally friendly. It can improve the microstructure of cement in order to improve their physical and mechanical properties and durability, and it can reduce energy consumption. The current focus is to study the microstructure and mechanical properties of nanoconcrete, as well as how to prepare inexpensive nanomaterials. Future, the nanocement will have a wider application field.


2019 ◽  
Vol 964 ◽  
pp. 115-123
Author(s):  
Sigit Tri Wicaksono ◽  
Hosta Ardhyananta ◽  
Amaliya Rasyida ◽  
Feisha Fadila Rifki

Plastic waste is majority an organic material that cannot easily decomposed by bacteria, so it needs to be recycled. One of the utilization of plastic waste recycling is become a mixture in the manufacture of building materials such as concrete, paving block, tiles, roof. This experiment purpose to find out the effect of addition of variation of LDPE and PP thermoplastic binder to physical and mechanical properties of LDPE/PP/Sand composite for construction material application. In this experiment are using many tests, such are SEM, FTIR, compression strength, density, water absorbability, and hardness. the result after the test are the best composition of composite PP/LDPE/sand is 70/0/30 because its have compression strength 14,2 MPa, while density value was 1.30 g/cm3, for the water absorbability is 0.073%, and for the highest hardness is 62.3 hardness of shore D. From the results obtained, composite material can be classified into construction materials for mortar application S type with average compression strength is 12.4 MPa.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Neslihan Doğan-Sağlamtimur ◽  
Adnan Güven ◽  
Ahmet Bilgil

Pumice, cements (CEM I- and CEM II-type), waste fly and bottom ashes (IFA, GBA, and BBA) supplied from international companies were used to produce lightweight building materials, and physical-mechanical properties of these materials were determined. Axial compressive strength (ACS) values were found above the standards of 4 and 8 MPa (Bims Concrete (BC) 40 and 80 kgf/cm2 class) for cemented (CEM I) pumice-based samples. On the contrary, the ACS values of the pumice-based cemented (CEM II) samples could not be reached to these standards. Best ACS results (compatible with BC80) from these cemented lightweight material samples produced with the ashes were found in 50% mixing ratio as 10.6, 13.2, and 20.5 MPa for BBA + CEM I, GBA + CEM II, and IFA + CEM I, respectively, and produced with pumice were found as 8.4 MPa (same value) for GBA + pumice + CEM II (in 25% mixing ratio), BBA + pumice + CEM I (in 100% mixing ratio), and pumice + IFA + CEM I (in 100% mixing ratio), respectively. According to the results, cemented ash-based lightweight building material produced with and without pumice could widely be used for constructive purposes. As a result of this study, an important input to the ecosystem has been provided using waste ashes, whose storage constitutes a problem.


Author(s):  
Viola Hospodarova ◽  
Nadezda Stevulova ◽  
Vojtech Vaclavik ◽  
Tomas Dvorsky ◽  
Jaroslav Briancin

Nowadays, construction sector is focusing in developing sustainable, green and eco-friendly building materials. Natural fibre is growingly being used in composite materials. This paper provides utilization of cellulose fibres as reinforcing agent into cement composites/plasters. Provided cellulosic fibres coming from various sources as bleached wood pulp and recycled waste paper fibres. Differences between cellulosic fibres are given by their physical characterization, chemical composition and SEM micrographs. Physical and mechanical properties of fibre-cement composites with fibre contents 0.2; 0.3and 0.5% by weight of filler and binder were investigated. Reference sample without fibres was also produced. The aim of this work is to investigate the effects of cellulose fibres on the final properties (density, water absorbability, coefficient of thermal conductivity and compressive strength) of the fibrecement plasters after 28 days of hardening. Testing of plasters with varying amount of cellulose fibres (0.2, 0.3 and 0.5 wt. %) has shown that the resulting physical and mechanical properties depend on the amount, the nature and structure of the used fibres. Linear dependences of compressive strength and thermal conductivity on density for plasters with cellulosic fibres adding were observed.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1460 ◽  
Author(s):  
Dan Dobrotă ◽  
Gabriela Dobrotă

The devulcanization of the rubber wastes in autoclave represent a technological variant that allows the superior utilization of rubber wastes, but with high energy consumption. The researches aimed at improving the devulcanization technology in order to obtain reclaimed rubber with superior characteristics, but also with a reduction in energy consumption. An improvement to devulcanization technology consisted in vacuuming the autoclave at the end of the devulcanization process. An increase in the degree of devulcanization of the rubber from 86.83% to 93.81% and an improvement of the physico-mechanical characteristics of the reclaimed rubber was achieved by applying this technology. The realization of the new type of regenerated rubber allowed for an increase in the degree of it use for different mixtures, from 15–20 phr to 30–40 phr without substantially affecting the physical and mechanical properties of the products. Additionally, the researche has shown that, by obtaining the new type of reclaimed rubber, the duration of the refining process has been reduced by 30%. All of this leads to a considerable reduction in energy consumption and transformation of the rubber waste reclaiming process into a sustainable one.


2017 ◽  
Vol 730 ◽  
pp. 412-417 ◽  
Author(s):  
Irina Garkina ◽  
Alexander Danilov ◽  
Yuri Skachkov

We considered the problems of mathematical modeling of composite materials in the example of the development of materials for the protection against ionizing radiation. Construction materials are provided as a complex system with the appropriate attributes. The structure and physico-mechanical properties of the material were determined by the results of the modeling of kinetic processes. Process of forming properties is described by the differential equation in deviations from the equilibrium state (as for dispersion system). It is taken into account the elastic and damping properties of the material. To predict the behavior of the building material and the formation of his private mathematical models are used a representation of the processes as of time series. It is given the algorithm for studies (with considering prehistory) of formation of the basic physical and mechanical properties of epoxy composites for radiation protection. We present an example of the identification of building materials with special properties. Approaches used effectively in the development of materials with special properties.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6970
Author(s):  
Paweł Niewiadomski ◽  
Anna Karolak ◽  
Damian Stefaniuk ◽  
Aleksandra Królicka ◽  
Jacek Szymanowski ◽  
...  

Recently, the research of innovative building materials is focused on applying supplementary materials in the form of micro- and nanopowders in cementitious composites due to the growing insistence on sustainable development. Considering above, in paper, a research on the effect of microsilica and SiO2 nanoparticles addition to cement paste, designed with Andreasen and Andersen (AA) packing density model (PDM), in terms of its physical and mechanical properties was conducted. Density, porosity, compressive strength, hardness, and modulus of indentation were investigated and compared regarding different amount of additives used in cement paste mixes. Microstructure of the obtained pastes was analyzed. The possibility of negative influence of alkali-silica reaction (ASR) on the mechanical properties of the obtained composites was analyzed. The results of the conducted investigations were discussed, and conclusions, also practical, were presented. The obtained results confirmed that the applied PDM may be an effective tool in cement paste design, when low porosity of prepared composite is required. On the other hand, the application of AA model did not bring satisfactory results of mechanical performance as expected, what was related, as shown by SEM imaging, with inhomogeneous dispersion of microsilica, and creation of agglomerates acting as reactive aggregates, what as a consequence caused ASR reaction, crack occurrence and lowered mechanical properties. Finally, the study found that the use of about 7.5% wt. of microsilica is the optimum in regards to obtain low porosity, while, to achieve improved mechanical properties, the use of 4 wt. % of microsilica seems to be optimal, in the case of tested cement pastes.


Arsitektura ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 199
Author(s):  
Annisa Fikriyah Tasya ◽  
Purwanita Setijanti ◽  
Asri Dinapradipta

<p class="Abstract"><em>At present energy efficiency is the main target to reduce building operating costs and achieve sustainability. The use of energy in buildings can be done through retrofitting. In addition, retrofitting has the potential to reduce carbon emissions, but there are also those who have to release some building features if necessary, energy features that are applied to existing buildings that have been issued to carry out renovations. Building reinforcement is a complex act, with various criteria that must be met with each other to achieve sustainable use of buildings. This article discusses the benefits, criteria, analytic methods, and decision making processes used to improve commercial buildings. The main criteria for increased energy consumption. Some other criteria are building materials, economy and occupants' needs. The analytical method for estimating or measuring the increase in retrofit that will be discussed in this article is a simulation of building energy. This method is widely used because it can predict the condition of buildings in the future. Each retrofit step is chosen and approved by the several factors; regulations, risks, business sustainability, knowledge, awareness and occupant demand. The retrofit valuation process is based on the value at which financial performance is taken into account. Retrofitting carried out on commercial buildings, applied with care, not only provides opportunities to reduce energy consumption and carbon emissions, but can also increase the value of these properties.</em><em></em></p>


2021 ◽  
Vol 246 ◽  
pp. 08005
Author(s):  
A.S. Strongin ◽  
A.M. Zhivov

In geographical areas with cold climates, large, massively constructed industrial and warehouse buildings and logistics complexes are large consumers of energy resources. The great height and large contained volumes of the premises, the presence of a significant number of doors, and building configurations that include many transport corridors all require the use of air-thermal curtains to increase the energy efficiency of the buildings’ heating, ventilating, and air-conditioning (HVAC) systems, which commonly produce several thousand kilowatts of thermal power. Optimization of air curtains can improve the microclimates of the premises, achieve savings in the initial construction costs, and also reduce energy consumption during operation by 10–20%.


Sign in / Sign up

Export Citation Format

Share Document