Method of registration of seismic waves

Author(s):  
Sh.M. Aitmet ◽  
◽  
M.D. Mukhamedzhanov ◽  
U.M. Orazalin ◽  
Ye.T. Bessimbaev ◽  
...  

This article provides an overview of the methodology for recording seismic waves. The main types of seismic vibrations and methods of their study have been determined.

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Khadijeh Zare ◽  
Hojjat Mahiyar ◽  
Mojtaba Ghaedi

Abstract Water level rising in fracture networks of a naturally fractured gas reservoir is extremely challenging and can significantly decrease the ultimate recovery due to reservoir heterogeneity. Although capillary drainage and gravity force can enhance the displacement of gas recovery from matrix to fracture, these forces may not be so effective in mobilizing a large amount of trapped gas through the matrix. So called, the use of seismic wave can be suggested as a low cost and environmentally friendly enhanced method compared with the other conventional enhanced methods. This article is aimed to examine the ability of seismic vibration in generating an efficient driving force for moving the remaining gas into the fracture which, to the best of the author’s knowledge, has not been reported so far. To this end, an in-house numerical simulator has been developed to investigate this enhanced recovery method and also to evaluate the effect of wave characteristics as well as rock properties on the ultimate recovery. The governing equations are solved numerically using finite difference approach and the accuracy of these equations was compared with a commercial simulator for verification. The results are very encouraging and show substantial gas recovery enhancement by applying seismic waves. Our investigation also shows that this stimulation method is more efficient at lower frequencies and also in higher permeable matrix and fractures.


Author(s):  
Н.И. Музаев ◽  
К.С. Харебов ◽  
И.Д. Музаев

Составлена математическая модель совместных сейсмических колебаний высоконапорной плотины, водохранилища и двух слоев массива грунта под основаниями плотины и водохранилища. Модель представляет контактную краевую задачу математической физики в которой учтены взаимозависимости колебательных процессов в грунтовой толще, в плотине и в водохранилище при распространении гармонической сейсмической волны в рассматриваемой системе. В результате решения поставленной задачи получены расчетные формулы для вычисления относительных амплитуд сейсмических колебаний гребня и основания плотины. The mathematical model of the co-seismic vibrations of high-pressure dams, reservoirs and two layers of soil under the foundations of the dam and reservoir is created. The model represents the contact boundary value problem of mathematical physics which takes into account the interdependence of oscillatory processes in soil, in the dam and in the reservoir during the propagation of harmonic seismic waves in the system under consideration. As a result of solving the tasks the formulae are derived to calculate the relative amplitudes of the oscillations of the top and the base of the dam.


Author(s):  
Danil S. Kudinov ◽  
Oleg A. Maykov ◽  
Pavel V. Balandin

Despite the development of alternative energy, hydrocarbon raw materials is one of the most important energy resources in the world. The discovery of new deposits today is an urgent task. Long-term prospects for the development of seismic exploration are associated with the development of the continental shelf, in particular the Arctic. Also, a large raw material potential is expected from poorly studied territories located on the Arctic coast of the Russian Federation, reef zones of the Persian Gulf states, and in the transit and shallow waters (at a depth of up to 10 meters). The article discusses the theoretical aspects of the excitation of seismic waves in the water, addresses the problems of instrumental implementation of a new source of seismic vibrations that can work: in the water area, in tidal and coastal zones, i.e. produce continuous seismic profiling from the water area to the land. The scientific substantiation of the developed seismic source (SS) design is given


2011 ◽  
Vol 8 (1) ◽  
pp. 275-286
Author(s):  
R.G. Yakupov ◽  
D.M. Zaripov

The stress-deformed state of the underground main pipeline under the action of seismic waves of an earthquake is considered. The generalized functions of seismic impulses are constructed. The pipeline motion equations are solved with used Laplace transformation by the time. Tensions and deformations of the pipeline have been determined. A numerical example is reviewed. Diagrams of change of the tension depending on earthquake force are provided in earthquake-points.


Author(s):  
Satoshi Fujita ◽  
Keisuke Minagawa ◽  
Mitsuru Miyazaki ◽  
Go Tanaka ◽  
Toshio Omi ◽  
...  

This paper describes three-dimensional isolation performance of seismic isolation system using air bearings. Long period seismic waves having predominant period of from a few seconds to a few ten seconds have recently been observed in various earthquakes. Also resonances of high-rise buildings and sloshing of petroleum tanks in consequence of long period seismic waves have been reported. Therefore the isolation systems having very long natural period or no natural period are required. In a previous paper [1], we proposed an isolation system having no natural period by using air bearings. Additionally we have already reported an introduction of the system, and have investigated horizontal motion during earthquake in the previous paper. It was confirmed by horizontal vibration experiment and simulation in the previous paper that the proposed system had good performance of isolation. However vertical motion should be investigated, because vertical motion varies horizontal frictional force. Therefore this paper describes investigation regarding vertical motion of the proposed system by experiment. At first, a vertical excitation test of the system is carried out so as to investigate vertical dynamic property. Then a three-dimensional vibration test using seismic waves is carried out so as to investigate performance of isolation against three-dimensional seismic waves.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hengxin Ren ◽  
Ling Zeng ◽  
Yao-Chong Sun ◽  
Ken’ichi Yamazaki ◽  
Qinghua Huang ◽  
...  

AbstractIn this paper, numerical computations are carried out to investigate the seismo-electromagnetic signals arising from the motional induction effect due to an earthquake source embedded in 3-D multi-layered media. First, our numerical computation approach that combines discrete wavenumber method, peak-trough averaging method, and point source stacking method is introduced in detail. The peak-trough averaging method helps overcome the slow convergence problem, which occurs when the source–receiver depth difference is small, allowing us to consider any focus depth. The point source stacking method is used to deal with a finite fault. Later, an excellent agreement between our method and the curvilinear grid finite-difference method for the seismic wave solutions is found, which to a certain degree verifies the validity of our method. Thereafter, numerical computation results of an air–solid two-layer model show that both a receiver below and another one above the ground surface will record electromagnetic (EM) signals showing up at the same time as seismic waves, that is, the so-called coseismic EM signals. These results suggest that the in-air coseismic magnetic signals reported previously, which were recorded by induction coils hung on trees, can be explained by the motional induction effect or maybe other seismo-electromagnetic coupling mechanisms. Further investigations of wave-field snapshots and theoretical analysis suggest that the seismic-to-EM conversion caused by the motional induction effect will give birth to evanescent EM waves when seismic waves arrive at an interface with an incident angle greater than the critical angle θc = arcsin(Vsei/Vem), where Vsei and Vem are seismic wave velocity and EM wave velocity, respectively. The computed EM signals in air are found to have an excellent agreement with the theoretically predicted amplitude decay characteristic for a single frequency and single wavenumber. The evanescent EM waves originating from a subsurface interface of conductivity contrast will contribute to the coseismic EM signals. Thus, the conductivity at depth will affect the coseismic EM signals recorded nearby the ground surface. Finally, a fault rupture spreading to the ground surface, an unexamined case in previous numerical computations of seismo-electromagnetic signals, is considered. The computation results once again indicate the motional induction effect can contribute to the coseismic EM signals.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 353
Author(s):  
Ligia Munteanu ◽  
Dan Dumitriu ◽  
Cornel Brisan ◽  
Mircea Bara ◽  
Veturia Chiroiu ◽  
...  

The purpose of this paper is to study the sliding mode control as a Ricci flow process in the context of a three-story building structure subjected to seismic waves. The stability conditions result from two Lyapunov functions, the first associated with slipping in a finite period of time and the second with convergence of trajectories to the desired state. Simulation results show that the Ricci flow control leads to minimization of the displacements of the floors.


Sign in / Sign up

Export Citation Format

Share Document