scholarly journals Newton’s Cooling Rate Constant of Liquids for the Relative Assessment for Heat Transport

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Fabricio Rodríguez-Acevedo ◽  
Fiore-Álvarez Stefano ◽  
Melissa Zúñiga-Campos ◽  
Bárbara C. Miranda ◽  
Julio F. Mata-Segreda
Author(s):  
Bo Cheng ◽  
Y. Kevin Chou

The powder-bed electron beam additive manufacturing (EBAM) process is a relatively new AM technology that utilizes a high-energy heat source to fabricate metallic parts in a layer by layer fashion by melting metal powder in selected regions. EBAM can be able to produce full density part and complicated components such as near-net-shape parts for medical implants and internal channels. However, the large variation in mechanical properties of AM build parts is an important issue that impedes the mass production ability of AM technology. It is known that the cooling rate in the melt pool directly related to the build part microstructure, which greatly influences the mechanical properties such as strength and hardness. And the cooling rate is correlated to the basic heat transport process physics in EBAM, which includes a moving heat source and rapid self-cooling process. Therefore, a better understanding of the thermal process of the EBAM process is necessary. In this study, a 3D thermal model, using a finite element method (FEM), was utilized for EBAM heat transport process simulations. The process temperature prediction offers information of the cooling rate during the heating-cooling cycle. The thermal model is applied to evaluate, for the case of Ti-6Al-4V in EBAM, the process parameter effects, such as the beam speed and power, on the temperature profile along the melt scan and the corresponding cooling rate characteristics. The relationship between cooling rates and process parameters is systematically investigated, through multiple simulations, by incorporating different combinations of process parameters into the thermal model. The beam scanning speed vs. beam power curves of constant cooling rates can be obtained from 3D surface plots (cooling rate vs. different process parameters), which may facilitate the process parameters selections and achieve consistent build part quality through controlling the cooling rate.


2013 ◽  
Vol 8 (S299) ◽  
pp. 380-381
Author(s):  
Emily Rauscher ◽  
Adam P. Showman

AbstractPlanets cool and contract as they age, with a cooling rate that depends on the efficiency with which they can transport heat out to space, first through the convective interior and then radiatively out through the atmosphere. The bottleneck for this cooling is the radiative-convective boundary (RCB), where the heat transport is the least efficient. Due to differential heating and atmospheric dynamics, the depth of the RCB can vary with latitude and longitude, meaning that the actual global cooling rate may differ from what would be calculated assuming a spherically symmetric RCB, as in 1D evolutionary models. Here we present models of the deep atmosphere of a generic hot Jupiter, calculate inhomogeneity in the RCB, and determine the resulting effect on the global thermal evolution. Although this issue can apply to any differentially heated gas giant, we focus on the hot Jupiter class of planet because: 1) the thick radiative zones above their deep RCBs can have a stronger influence on deforming the surface of the RCB than would generally be the case for a less-irradiated planet, and 2) an uneven RCB should increase the cooling rate, potentially exacerbating the mismatch between the large radii measured for some hot Jupiters and the smaller radii expected from evolutionary models.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1826 ◽  
Author(s):  
Zhen Xu ◽  
Claire Utton ◽  
Panos Tsakiropoulos

Alloying with Al, Cr, Sn, and Ti significantly improves the oxidation of Nb silicide-based alloys at intermediate and high temperatures. There is no agreement about what the concentration of Sn in the alloys should be. It has been suggested that with Sn ≤ 3 at.% the oxidation is improved and formation of the brittle A15-Nb3Sn compound is suppressed. Definite improvements in oxidation behaviour have been observed with 5 at.% Sn or even higher concentrations, up to 8 at.% Sn. The research reported in this paper is about three model alloys with low Sn concentration and nominal compositions Nb-24Ti-18Si-5Cr-2Sn (ZX3), Nb-24Ti-18Si-5Al-2Sn (ZX5), and Nb-24Ti-18Si-5Al-5Cr-2Sn (ZX7) that were studied to understand the effect of the 2 at.% Sn addition on as-cast and heat-treated microstructures and isothermal oxidation in air at 800 and 1200 °C for 100 h. There was macrosegregation of Si and Ti in the alloys ZX3 and ZX5 and only of Si in the alloy ZX7. The Nbss was stable in all alloys. Tin and Ti exhibited opposite partitioning behaviour in the Nbss. The βNb5Si3 was the primary phase in all three cast alloys and had partially transformed to αNb5Si3 in the alloy ZX3. Aluminium in synergy with Sn increased the sluggishness of the βNb5Si3 to αNb5Si3 transformation during solidification. After the heat treatment the transformation of βNb5Si3 to αNb5Si3 had been completed in all three alloys. Fine precipitates were observed inside some αNb5Si3 grains in the alloys ZX5 and ZX7. In the latter alloys the A15-Nb3X (X = Al, Si, and Sn) formed after the heat treatment, i.e., the synergy of Al and Sn promoted the stability of A15-Nb3X intermetallic in these Nb-silicide-based alloys even at this low Sn concentration. A Nbss + Nb5Si3 eutectic formed in all three alloys and there was evidence of anomalous eutectic in the parts of the alloys ZX3 and ZX7 that had solidified under high cooling rate and/or high melt undercooling. A very fine ternary Nbss + Nb5Si3 + NbCr2 eutectic was also observed in parts of the alloy ZX3 that had solidified under high cooling rate. At 800 °C none of the alloys suffered from catastrophic pest oxidation; ZX7 had a smaller oxidation rate constant. A thin Sn-rich layer formed continuously between the scale and Nbss in the alloys ZX3 and ZX5. At 1200 °C the scales formed on all three alloys spalled off, the alloys exhibited parabolic oxidation in the early stages followed by linear oxidation; the alloy ZX5 gave the smallest rate constant values. A thicker continuous Sn-rich zone formed between the scale and substrate in all three alloys. This Sn-rich zone was noticeably thicker near the corners of the specimen of the alloy ZX7 and continuous around the whole specimen. The Nb3Sn, Nb5Sn2Si, and NbSn2 compounds were observed in the Sn-rich zone. At both temperatures the scales formed on all three alloys consisted of Nb-rich and Nb and Si-rich oxides, and Ti-rich oxide also was formed in the scales of the alloys ZX3 and ZX7 at 1200 °C. The formation of a Sn-rich layer/zone did not prevent the contamination of the bulk of the specimens by oxygen, as both Nbss and Nb5Si3 were contaminated by oxygen, the former more severely than the latter.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
J. M. Walsh ◽  
J. C. Whittles ◽  
B. H. Kear ◽  
E. M. Breinan

Conventionally cast γ’ precipitation hardened nickel-base superalloys possess well-defined dendritic structures and normally exhibit pronounced segregation. Splat quenched, or rapidly solidified alloys, on the other hand, show little or no evidence for phase decomposition and markedly reduced segregation. In what follows, it is shown that comparable results have been obtained in superalloys processed by the LASERGLAZE™ method.In laser glazing, a sharply focused laser beam is traversed across the material surface at a rate that induces surface localized melting, while avoiding significant surface vaporization. Under these conditions, computations of the average cooling rate can be made with confidence, since intimate contact between the melt and the self-substrate ensures that the heat transfer coefficient is reproducibly constant (h=∞ for perfect contact) in contrast to the variable h characteristic of splat quenching. Results of such computations for pure nickel are presented in Fig. 1, which shows that there is a maximum cooling rate for a given absorbed power density, corresponding to the limiting case in which melt depth approaches zero.


Author(s):  
J. J. Laidler

The presence of three-dimensional voids in quenched metals has long been suspected, and voids have indeed been observed directly in a number of metals. These include aluminum, platinum, and copper, silver and gold. Attempts at the production of observable quenched-in defects in nickel have been generally unsuccessful, so the present work was initiated in order to establish the conditions under which such defects may be formed.Electron beam zone-melted polycrystalline nickel foils, 99.997% pure, were quenched from 1420°C in an evacuated chamber into a bath containing a silicone diffusion pump fluid . The pressure in the chamber at the quenching temperature was less than 10-5 Torr . With an oil quench such as this, the cooling rate is approximately 5,000°C/second above 400°C; below 400°C, the cooling curve has a long tail. Therefore, the quenched specimens are aged in place for several seconds at a temperature which continuously approaches the ambient temperature of the system.


Author(s):  
P. A. Molian ◽  
K. H. Khan ◽  
W. E. Wood

In recent years, the effects of chromium on the transformation characteristics of pure iron and the structures produced thereby have been extensively studied as a function of cooling rate. In this paper, we present TEM observations made on specimens of Fe-10% Cr and Fe-20% Cr alloys produced through laser surface alloying process with an estimated cooling rate of 8.8 x 104°C/sec. These two chromium levels were selected in order to study their phase transformation characteristics which are dissimilar in the two cases as predicted by the constitution diagram. Pure iron (C<0.01%, Si<0.01%, Mn<0.01%, S=0.003%, P=0.008%) was electrodeposited with chromium to the thicknesses of 40 and 70μm and then vacuum degassed at 400°F to remove the hydrogen formed during electroplating. Laser surface alloying of chromium into the iron substrate was then performed employing a continuous wave CO2 laser operated at an incident power of 1200 watts. The laser beam, defocussed to a spot diameter of 0.25mm, scanned the material surface at a rate of 30mm/sec, (70 ipm).


2002 ◽  
Vol 12 (3) ◽  
pp. 201-206 ◽  
Author(s):  
Janina Marciak-Kozłowska ◽  
Mirosław Kozłowski
Keyword(s):  

1993 ◽  
Vol 70 (02) ◽  
pp. 326-331 ◽  
Author(s):  
H R Lijnen ◽  
B Van Hoef ◽  
R A G Smith ◽  
D Collen

SummaryThe kinetic and fibrinolytic properties of a reversibly acylated stoichiometric complex between human plasmin and recombinant staphylokinase (plasmin-STAR complex) were evaluated. The acylation rate constant of plasmin-STAR by p-amidinophenyl-p’-anisate-HCI was 52 M-1 s-1 and its deacylation rate constant 1.2 × 10-4 s-1 (t½ of 95 min) which are respectively 50-fold and around 3-fold lower than for the plasmin-streptokinase complex. The acylated complex was stable as evidenced by binding to lysine-Sepharose. However, following an initial short lag phase, the acylated plasmin-STAR complex activated plasminogen at a similar rate as the unblocked complex, whereas the acylated plasmin-streptokinase complex did not activate plasminogen. These findings indicate that STAR, unlike streptokinase, dissociates from its acylated complex with plasmin in the presence of excess plasminogen. In agreement with this hypothesis, the time course of the lysis of a 125I-fibrin labeled plasma clot submerged in citrated human plasma, is similar for acylated plasmin-STAR, unblocked plasmin-STAR and free STAR (50% clot lysis in 2 h requires 12 nM of each agent). The plasma clearances of STAR-related antigen following bolus injection in hamsters were 1.0 to 1.5 ml/min for acylated plasmin-STAR, unblocked plasmin-STAR and free STAR, as a result of short initial half-lives of 2.0 to 2.5 min.The dissociation of the anisoylated plasmin-STAR complex and its consequent rapid clearance suggest that it has no apparent advantages as compared to free STAR for clinical thrombolysis.


Sign in / Sign up

Export Citation Format

Share Document