scholarly journals Selective measurements of isoprene and 2-methyl-3-buten-2-ol based on NO<sup>+</sup> ionization mass spectrometry

2012 ◽  
Vol 12 (24) ◽  
pp. 11877-11884 ◽  
Author(s):  
T. Karl ◽  
A. Hansel ◽  
L. Cappellin ◽  
L. Kaser ◽  
I. Herdlinger-Blatt ◽  
...  

Abstract. Biogenic VOC emissions are often dominated by 2-methyl-1,3-butadiene (isoprene) and 2-methyl-3-buten-2-ol (232 MBO). Here we explore the possibility to selectively distinguish these species using NO+ as a primary ion in a conventional PTR-MS equipped with an SRI unit. High purity of NO+ (>90%) as a primary ion was utilized in laboratory and field experiments using a conventional PTR-TOF-MS. Isoprene is ionized via charge transfer leading to the major product ion C5H8+ (>99%) (e.g. Spanel and Smith, 1998). 232 MBO undergoes a hydroxide ion transfer reaction resulting in the major product ion channel C5H9+ (>95%) (e.g. Amelynck et al., 2005). We show that both compounds are ionized with little fragmentation (>5%) under standard operating conditions. Typical sensitivities of 11.1 ± 0.1 (isoprene) and 12.9 ± 0.1 (232 MBO) ncps ppbv−1 were achieved, which correspond to limit of detections of 18 and 15 pptv respectively for a 10 s integration time. Sensitivities decreased at higher collisional energies. Calibration experiments showed little humidity dependence. We tested the setup at a field site in Colorado dominated by ponderosa pine, a 232 MBO emitting plant species. Our measurements confirm 232 MBO as the dominant biogenic VOC at this site, exhibiting typical average daytime concentrations between 0.2–1.4 ppbv. The method is able to detect the presence of trace levels of isoprene at this field site (90–250 ppt) without any interference from 232 MBO, which would not be feasible using H3O+ ionization chemistry, and which currently also remains a challenge for other analytical techniques (e.g. gas chromatographic methods).

2012 ◽  
Vol 12 (8) ◽  
pp. 19349-19370 ◽  
Author(s):  
T. Karl ◽  
A. Hansel ◽  
L. Cappellin ◽  
L. Kaser ◽  
I. Herdlinger ◽  
...  

Abstract. Biogenic VOC emissions are often dominated by 2-methyl-1,3-butadiene (isoprene) and 2-methyl-3-buten-2-ol (232 MBO). Here we explore the possibility for selectively distinguishing these species using NO+ as primary ion based on PTR-MS technology. High purity of NO+ (>90%) as a primary ion was achieved in laboratory and field experiments using a PTR-TOF-MS. Isoprene is ionized via charge transfer leading to the major product ion C5H8+ (>99%) (e.g. Spanel and Smith, 1998). 232 MBO undergoes a hydroxide ion transfer reaction resulting in the major product ion channel C5H9+ (>95%) (e.g. Amelynck et al., 2005). We show that both compounds are ionized with little fragmentation (<5%) under standard PTR-MS operating conditions. Typical sensitivities of 11.1±0.1 (isoprene) and 12.9±0.1 (232 MBO) ncps ppbv−1 were achieved, which correspond to limit of detections of 18 and 15 pptv, respectively for a 10 s integration time. Sensitivities decreased at higher collisional energies. Calibration experiments showed little humidity dependence. We tested the setup at a field site in Colorado dominated by ponderosa pine, a 232 MBO emitting plant species. Our measurements confirm 232 MBO as the dominant biogenic VOC at this site, exhibiting typical average daytime concentrations between 0.2–1.4 ppbv. The method is able to detect the presence of trace levels of isoprene (90–250 ppt) without any interference from 232 MBO, which would not be feasible using H3O+ ionization chemistry, and which currently also remains achallenge for other analytical techniques (e.g. gas chromatographic methods).


Author(s):  
И.В. Бачериков ◽  
Б.М. Локштанов

При проектировании открытых и закрытых хранилищ измельченных сыпучих материалов древесных материалов, таких как щепа и опилки, большое значение имеет угол естественного откоса (статический и динамический) этих материалов. В технической литературе приводятся противоречивые сведения о величине этих углов, что приводит к ошибкам при проектировании складов. В справочных данных не учитываются условия, в которых эксплуатируются емкости для хранения сыпучих материалов, свойства и состояние этих сыпучих материалов. В свою очередь, ошибки при проектировании приводят к проблемам (зависание, сводообразование, «затопление» и т. д.) и авариям при эксплуатации бункеров и силосов на производстве. В статье представлены сведения, посвященные влиянию влажности и температуры на угол естественного откоса сыпучих материалов. На основании лабораторных и натурных экспериментов, проведенных с помощью специально разработанных методик и установок, была скорректирована формула для определения углов естественного откоса (статического и динамического) для измельченных древесных материалов в зависимости от их фракционного и породного состава, влажности (абсолютной и относительной) и температуры. При помощи скорректированной формулы можно определить угол естественного откоса древесных сыпучих материалов со среднегеометрическим размером частицы от 0,5 мм до 15 мм (от древесной пыли до технологической щепы) в различных производственных условиях. Статья может быть полезна проектировщикам при расчете угла наклона граней выпускающей воронки бункеров и силосов предприятий лесной отрасли и целлюлозо-бумажной промышленности. In the design of open and closed storage warehouses chopped wood materials for bulk materials such as wood chips and sawdust, great importance has an angle of repose (static and dynamic) of these materials. In the technical literature are conflicting reports about the magnitude of these angles, which leads to errors in the design of warehouses. In the referencesdoes not take into account the conditions under which operated capacities for storage of bulk materials, and properties and condition of the bulk material. The design errors lead to problems (hanging, arching, «flooding», etc.) and accidents in the operation of hoppers and silos at the mills. The article provides information on the impact of humidity and temperature on the angle of repose of granular materials. On the basis of laboratory and field experiments, conducted with the help of specially developed techniques and facilities has been adjusted formula for determining the angle of repose (static and dynamic) for the shredded wood materials depending on their fractional and species composition, humidity (absolute and relative) and temperature. It is possible, by using the corrected formula, to determine the angle of repose of loose wood materials with average particle size of from 0.5 mm to 15 mm (wood dust to pulpchips) in various operating conditions. The article can be helpful to designers in the calculation of the angle of inclination of the funnel faces produces bunkers and silos forest industries and pulp and paper industry.


2021 ◽  
Author(s):  
Luis M. F. Barreira ◽  
Arttu Ylisirniö ◽  
Iida Pullinen ◽  
Angela Buchholz ◽  
Zijun Li ◽  
...  

Abstract. Secondary organic aerosols (SOA) formed from biogenic volatile organic compounds (BVOCs) constitute a significant fraction of atmospheric particulate matter and have been recognized to affect significantly the climate and air quality. Many laboratory and field experiments have studied SOA particle formation and growth in the recent years. Most of them have focused on a few monoterpenes and isoprene. However, atmospheric SOA particulate mass yields and chemical composition result from a much more complex mixture of oxidation products originating from many BVOCs, including terpenes other than isoprene and monoterpenes. Thus, a large uncertainty still remains regarding the contribution of BVOCs to SOA. In particular, organic compounds formed from sesquiterpenes have not been thoroughly investigated, and their contribution to SOA remains poorly characterized. In this study, a Filter Inlet for Gases and Aerosols (FIGAERO) combined with a high-resolution time-of-flight chemical ionization mass spectrometer (CIMS), with iodide ionization, was used for the simultaneous measurement of gas and particle phase atmospheric SOA. The aim of the study was to evaluate the relative contribution of sesquiterpene oxidation products to SOA in a spring-time hemi-boreal forest environment. Our results revealed that monoterpene and sesquiterpene oxidation products were the main contributors to SOA particles. The chemical composition of SOA particles was compared for times when either monoterpene or sesquiterpene oxidation products were dominant and possible key oxidation products for SOA particle formation were identified. Surprisingly, sesquiterpene oxidation products were the predominant fraction in the particle phase at some periods, while their gas phase concentrations remained much lower than those of monoterpene products. This can be explained by quick and effective partitioning of sesquiterpene products into the particle phase or their efficient removal by dry deposition. The SOA particle volatility determined from measured thermograms increased when the concentration of sesquiterpene oxidation products in SOA particles was higher than that of monoterpenes. Overall, this study demonstrates the important role of sesquiterpenes in atmospheric chemistry and suggests that the contribution of their products to SOA particles is being underestimated in comparison to the most studied terpenes.


2021 ◽  
Author(s):  
Chenyang Bi ◽  
Jordan E. Krechmer ◽  
Manjula R. Canagaratna ◽  
Gabriel Isaacman-VanWertz

Abstract. Quantitative calibration of analytes using chemical ionization mass spectrometers (CIMS) has been hindered by the lack of commercially available standards of atmospheric oxidation products. To accurately calibrate analytes without standards, techniques have been recently developed to log-linearly correlate analyte sensitivity with instrument operating conditions. However, there is an inherent bias when applying log-linear calibration relationships that is typically ignored. In this study, we examine the bias in a log-linear based calibration curve based on prior mathematical work. We quantify the potential bias within the context of a CIMS-relevant relationship between analyte sensitivity and instrument voltage differentials. Uncertainty in three parameters has the potential to contribute to the bias, specifically the inherent extent to which the nominal relationship can capture true sensitivity, the slope of the relationship, and the voltage differential below which maximum sensitivity is achieved. Using a prior published case study, we estimate an average bias of 30%, with one order of magnitude for less sensitive compounds in some circumstances. A parameter-explicit solution is proposed in this work for completely removing the inherent bias generated in the log-linear calibration relationships. A simplified correction method is also suggested for cases where a comprehensive bias correction is not possible due to unknown uncertainties of calibration parameters, which is shown to eliminate the bias on average but not for each individual compound.


2021 ◽  
Vol 14 (10) ◽  
pp. 6551-6560
Author(s):  
Chenyang Bi ◽  
Jordan E. Krechmer ◽  
Manjula R. Canagaratna ◽  
Gabriel Isaacman-VanWertz

Abstract. Quantitative calibration of analytes using chemical ionization mass spectrometers (CIMSs) has been hindered by the lack of commercially available standards of atmospheric oxidation products. To accurately calibrate analytes without standards, techniques have been recently developed to log-linearly correlate analyte sensitivity with instrument operating conditions. However, there is an inherent bias when applying log-linear calibration relationships that is typically ignored. In this study, we examine the bias in a log-linear-based calibration curve based on prior mathematical work. We quantify the potential bias within the context of a CIMS-relevant relationship between analyte sensitivity and instrument voltage differentials. Uncertainty in three parameters has the potential to contribute to the bias, specifically the inherent extent to which the nominal relationship can capture true sensitivity, the slope of the relationship, and the voltage differential below which maximum sensitivity is achieved. Using a prior published case study, we estimate an average bias of 30 %, with 1 order of magnitude for less sensitive compounds in some circumstances. A parameter-explicit solution is proposed in this work for completely removing the inherent bias generated in the log-linear calibration relationships. A simplified correction method is also suggested for cases where a comprehensive bias correction is not possible due to unknown uncertainties of calibration parameters, which is shown to eliminate the bias on average but not for each individual compound.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 392 ◽  
Author(s):  
Miroslava Šudomová ◽  
Sherif T. S. Hassan ◽  
Haroon Khan ◽  
Mahsa Rasekhian ◽  
Seyed Mohammad Nabavi

In the current study, pyroglutamic acid (pGlu), a natural amino acid derivative, has efficiently inhibited the catalytic activities of three important enzymes, namely: Human recombinant phosphodiesterase-5A1 (PDE5A1), human angiotensin-converting enzyme (ACE), and urease. These enzymes were reported to be associated with several important clinical conditions in humans. Radioactivity-based assay, spectrophotometric-based assay, and an Electrospray Ionization-Mass Spectrometry-based method were employed to ascertain the inhibitory actions of pGlu against PDE5A1, ACE, and urease, respectively. The results unveiled that pGlu potently suppressed the activity of PDE5A1 (half-maximal inhibitory concentration; IC50 = 5.23 µM) compared with that of standard drug sildenafil citrate (IC50 = 7.14 µM). Moreover, pGlu at a concentration of 20 µg/mL was found to efficiently inhibit human ACE with 98.2% inhibition compared with that of standard captopril (99.6%; 20 µg/mL). The urease-catalyzed reaction was also remarkably inactivated by pGlu and standard acetohydroxamic acid with IC50 values of 1.8 and 3.9 µM, respectively. Remarkably, the outcome of in vitro cytotoxicity assay did not reveal any significant cytotoxic properties of pGlu against human cervical carcinoma cells and normal human fetal lung fibroblast cells. In addition to in vitro assays, molecular docking analyses were performed to corroborate the outcomes of in vitro results with predicted structure–activity relationships. In conclusion, pGlu could be presented as a natural and multifunctional agent with promising applications in the treatment of some ailments connected with the above-mentioned anti-enzymatic properties.


Author(s):  
Justin Gossard ◽  
Steven A. Waters ◽  
Shane Finneran

Construction blasting was proposed as a technique to create a trench for a new pipeline within the right-of-way (ROW) of an existing vintage pipeline where soil conditions consisted primarily of rock. Several field experiments were conducted to assess the potential loading conditions that the vintage pipeline could experience due to various blasting configurations as part of the nearby construction process. Two test pipe segments were constructed from segments removed from the vintage pipeline for use in these experiments. Each test segment contained two vintage bell-bell chill ring girth welds (GW) and were pressurized to operating conditions of the vintage pipeline for the duration of all blasting. Groups of eight resistive strain gages were bonded around the exterior surface of three distinct locations on each test segment. The three locations include one pipe body location and each of the two welds on each segment. Four separate experiments were conducted with each experiment focusing on a unique combination of trench backfill material, compaction level and separation distance from the test pipe segments and the explosive charges. The primary objective throughout these four experiments was to monitor and record the behavior of buried test pipe sections due to nearby blasting activities. Long range 3-dimentional (3D) laser scanning equipment was used to track movement of each test segment from test to test. High-speed video equipment was also employed to capture each blast. The high-speed video provided additional details on the blast energy transfer, verification of individual charge initiation as well as pipeline test segment movement where each pipeline segment was exposed. Peak particle velocity measurements were taken during each test blast. Strain data collected during each test was used to assess potential damage to the vintage pipeline test segments as a result of blasting. The combined information collected from the in-field testing showed that elevated strains and stresses may be observed during blasting activities near pipelines.


2016 ◽  
Vol 9 (8) ◽  
pp. 3851-3861 ◽  
Author(s):  
Javier Sanchez ◽  
David J. Tanner ◽  
Dexian Chen ◽  
L. Gregory Huey ◽  
Nga L. Ng

Abstract. Hydroperoxy radicals (HO2) play an important part in tropospheric photochemistry, yet photochemical models do not capture ambient HO2 mixing ratios consistently. This is likely due to a combination of uncharacterized chemical pathways and measurement limitations. The indirect nature of current HO2 measurements introduces challenges in accurately measuring HO2; therefore a direct technique would help constrain HOx chemistry in the atmosphere. In this work we evaluate the feasibility of using chemical ionization mass spectrometry (CIMS) and propose a direct HO2 detection scheme using bromide as a reagent ion. Ambient observations were made with a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) in Atlanta over the month of June 2015 to demonstrate the capability of this direct measurement technique. Observations displayed expected diurnal profiles, reaching daytime median values of ∼ 5 ppt between 2 and 3 p.m. local time. The HO2 diurnal profile was found to be influenced by morning-time vehicular NOx emissions and shows a slow decrease into the evening, likely from non-photolytic production, among other factors. Measurement sensitivities of approximately 5.1 ± 1.0 cps ppt−1 for a bromide ion (79Br−) count rate of 106 cps were observed. The relatively low instrument background allowed for a 3σ lower detection limit of 0.7 ppt for a 1 min integration time. Mass spectra of ambient measurements showed the 79BrHO2− peak was the major component of the signal at nominal mass-to-charge 112, suggesting high selectivity for HO2 at this mass-to-charge. More importantly, this demonstrates that these measurements can be achieved using instruments with only unit mass resolution capability.


2020 ◽  
Vol 10 (23) ◽  
pp. 8690
Author(s):  
Víctor Samano-Ortega ◽  
Alfredo Padilla-Medina ◽  
Micael Bravo-Sanchez ◽  
Elías Rodriguez-Segura ◽  
Alonso Jimenez-Garibay ◽  
...  

The hardware in the loop (HIL) technique allows you to reproduce the behavior of a dynamic system or part of it in real time. This quality makes HIL a useful tool in the controller validation process and is widely used in multiple areas including photovoltaic systems (PVSs). This study presents the development of an HIL system to emulate the behavior of a PVS that includes a photovoltaic panel (PVP) and a DC-DC boost converter connected in series. The emulator was embedded into an NI-myRIO development board that operates with an integration time of 10 µs and reproduces the behavior of the real system with a mean percent error of 2.0478%, compared to simulation results. The implemented emulator is proposed as a platform for the validation of control systems. With it, the experimental stage is carried out on two controllers connected to the PVS without having the real system and allowing to emulate different operating conditions. The first controller is based on the Hill Climbing algorithm for the maximum power point tracking (MPPT), the second is a proportional integral (PI) controller for voltage control. Both controllers generate settling times of less than 3 s; the MPPT controller generates variations in the output in steady state inherent to the algorithm used. For both cases, the comparison of the experimental results with those obtained through software simulation show that the platform fulfills its usefulness when evaluating control systems.


2020 ◽  
Vol 143 ◽  
pp. 02044
Author(s):  
Gao Chunxue ◽  
Wu Songlin ◽  
Lang Junqian ◽  
Liu Qiuxin

This paper presents a case study of phase change cooling and heating wall radiant (PC-CHWR) air conditioning system application in an energy-saving renovation project in a laboratory in Wuhan, Hubei province in China. To test the thermal performance of the system, the PHOENICS software was utilized to simulate and analyse the indoor thermal environment in the laboratory under both winter and summer operating conditions. In addition, field experiments were also conducted under winter operation condition. By comparing the results between numerical simulation and field experiment, it is found that thermal performance of the PC-CHWR air conditioning system evaluated by these two evaluation methods are quite match. Moreover, the results also show that the PC-CHWR system can meet the cooling and heating load of the building within the acceptable range.


Sign in / Sign up

Export Citation Format

Share Document