scholarly journals Radiative and dynamical contributions to past and future Arctic stratospheric temperature trends

2014 ◽  
Vol 14 (3) ◽  
pp. 1679-1688 ◽  
Author(s):  
P. Bohlinger ◽  
B.-M. Sinnhuber ◽  
R. Ruhnke ◽  
O. Kirner

Abstract. Arctic stratospheric ozone depletion is closely linked to the occurrence of low stratospheric temperatures. There are indications that cold winters in the Arctic stratosphere have been getting colder, raising the question if and to what extent a cooling of the Arctic stratosphere may continue into the future. We use meteorological reanalyses from the European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim and NASA's Modern-Era Retrospective-Analysis for Research and Applications (MERRA) for the past 32 yr together with calculations of the chemistry-climate model (CCM) ECHAM/MESSy Atmospheric Chemistry (EMAC) and models from the Chemistry-Climate Model Validation (CCMVal) project to infer radiative and dynamical contributions to long-term Arctic stratospheric temperature changes. For the past three decades the reanalyses show a warming trend in winter and cooling trend in spring and summer, which agree well with trends from the Radiosonde Innovation Composite Homogenization (RICH) adjusted radiosonde data set. Changes in winter and spring are caused by a corresponding change of planetary wave activity with increases in winter and decreases in spring. During winter the increase of planetary wave activity is counteracted by a residual radiatively induced cooling. Stratospheric radiatively induced cooling is detected throughout all seasons, being highly significant in spring and summer. This means that for a given dynamical situation, according to ERA-Interim the annual mean temperature of the Arctic lower stratosphere has been cooling by −0.41 ± 0.11 K decade−1 at 50 hPa over the past 32 yr. Calculations with state-of-the-art models from CCMVal and the EMAC model qualitatively reproduce the radiatively induced cooling for the past decades, but underestimate the amount of radiatively induced cooling deduced from reanalyses. There are indications that this discrepancy could be partly related to a possible underestimation of past Arctic ozone trends in the models. The models project a continued cooling of the Arctic stratosphere over the coming decades (2001–2049) that is for the annual mean about 40% less than the modeled cooling for the past, due to the reduction of ozone depleting substances and the resulting ozone recovery. This projected cooling in turn could offset between 15 and 40% of the Arctic ozone recovery.

2013 ◽  
Vol 13 (3) ◽  
pp. 6707-6728
Author(s):  
P. Bohlinger ◽  
B.-M. Sinnhuber ◽  
R. Ruhnke ◽  
O. Kirner

Abstract. Arctic stratospheric ozone depletion is closely linked to the occurrence of low stratospheric temperatures. There are indications that cold winters in the Arctic stratosphere have been getting colder, raising the question if and to what extent a cooling of the Arctic stratosphere may continue into the future. We use meteorological re-analyses from ERA-Interim for the past 32 yr together with calculations of the chemistry-climate model EMAC and CCM models from the CCMVal project to infer radiative and dynamical contributions to long-term Arctic stratospheric temperature changes. For the past three decades ERA-Interim shows a warming trend in winter and cooling trend in spring and summer. Changes in winter and spring are caused by a corresponding change of planetary wave activity with increases in winter and decreases in spring. During winter the increase of planetary wave activity is counteracted by a radiatively induced cooling. Stratospheric radiatively induced cooling is detected throughout all seasons being highly significant in spring and summer. This means that for a given dynamical situation, in ERA-Interim the annual mean temperature of the Arctic lower stratosphere has been cooling by −0.41 ± 0.11 K decade−1 at 50 hPa over the past 32 yr. Calculations with state-of-the-art models from CCMVal and the EMAC model confirm the radiatively induced cooling for the past decades, but underestimate the amount of radiatively induced cooling deduced from ERA-Interim. EMAC predicts a continued annual radiatively induced cooling for the coming decades (2001–2049) of −0.15 ± 0.06 K decade−1 where the projected increase of CO2 accounts for about 2/3 of the cooling effect. Expected decrease of stratospheric halogen loading and resulting ozone recovery in the future counteracts the cooling tendency due to increasing greenhouse gas concentrations and leads to a reduced future cooling trend compared to the past. CCMVal multi-model mean predicts a future annual mean radiatively induced cooling of −0.10 ± 0.02 K decade−1 which is also smaller in the future than in the past.


2017 ◽  
Vol 17 (21) ◽  
pp. 12893-12910 ◽  
Author(s):  
Farahnaz Khosrawi ◽  
Oliver Kirner ◽  
Björn-Martin Sinnhuber ◽  
Sören Johansson ◽  
Michael Höpfner ◽  
...  

Abstract. The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT) existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the Polar Stratosphere in a Changing Climate (POLSTRACC) campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO) mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical–dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar stratospheric O3 loss of ∼ 2 ppmv or 117 DU in terms of column ozone in mid-March. The stratosphere was denitrified by about 4–8 ppbv HNO3 and dehydrated by about 0.6–1 ppmv H2O from the middle to the end of February. While ozone loss was quite strong, but not as strong as in 2010/2011, denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.


2019 ◽  
Author(s):  
Franziska Schranz ◽  
Jonas Hagen ◽  
Gunter Stober ◽  
Klemens Hocke ◽  
Axel Murk ◽  
...  

Abstract. Middle atmospheric ozone, water vapour and zonal and meridional wind profiles have been measured with the two ground-based microwave radiometers GROMOS-C and MIAWARA-C. The instruments are located at the Arctic research base AWIPEV at Ny-Ålesund, Svalbard (79° N, 12° E) since September 2015. GROMOS-C measures ozone spectra in the four cardinal directions with an elevation angle of 22°. This means that the probed airmasses at an altitude of 3 hPa (37 km) have a horizontal distance of 92 km to Ny-Ålesund. We retrieve four separate ozone profiles along the lines of sight and calculate daily mean horizontal ozone gradients which allow us to investigate the small-scale spatial variability of ozone above Ny-Ålesund. In winter 2018/2019 a major sudden stratospheric warming (SSW) took place with the central date at 2 January. We present the ozone, water vapour and wind measurements of the winter 2018/2019 and discuss the signatures of the SSW in a global context. We further present the evolution of the ozone gradients at Ny-Ålesund and link it to the planetary wave activity. At 3 hPa we find a distinct seasonal variation of the ozone gradients. In October and March a strong polar vortex leads to ozone decreases towards the pole. In November the amplitudes of the planetary waves grow until they break in the end of December and an SSW takes place. From November until February the ozone gradients mostly point to higher latitudes and the magnitude is smaller than in October and March. We attribute this to the planetary wave activity of wave number 1 and 2 which enabled meridional transport. The MERRA-2 reanalysis and the SD-WACCM model are able to capture the small-scale ozone variability and its seasonal changes.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Pavel N. Vargin ◽  
Sergey V. Kostrykin ◽  
Evgeni M. Volodin ◽  
Alexander I. Pogoreltsev ◽  
Ke Wei

Simulations of Institute of Numerical Mathematics (INM) coupled climate model 5th version for the period from 2015 to 2100 under moderate (SSP2-4.5) and severe (SSP5-8.5) scenarios of greenhouse gases growth are analyzed to investigate changes of Arctic polar stratospheric vortex, planetary wave propagation, Sudden Stratospheric Warming frequency, Final Warming dates, and meridional circulation. Strengthening of wave activity propagation and a stationary planetary wave number 1 in the middle and upper stratosphere, acceleration of meridional circulation, an increase of winter mean polar stratospheric volume (Vpsc) and strengthening of Arctic stratosphere interannual variability after the middle of 21st century, especially under a severe scenario, were revealed. March monthly values of Vpsc in some winters could be about two times more than observed ones in the Arctic stratosphere in the spring of 2011 and 2020, which in turn could lead to large ozone layer destruction. Composite analysis shows that “warm” winters with the least winter mean Vpsc values are characterized by strengthening of wave activity propagation from the troposphere into the stratosphere in December but weaker propagation in January–February in comparison with winters having the largest Vpsc values.


2014 ◽  
Vol 10 (3) ◽  
pp. 1183-1194 ◽  
Author(s):  
I. Suter ◽  
R. Zech ◽  
J. G. Anet ◽  
T. Peter

Abstract. Geomagnetic excursions, i.e. short periods in time with much weaker geomagnetic fields and substantial changes in the position of the geomagnetic pole, occurred repeatedly in the Earth's history, e.g. the Laschamp event about 41 kyr ago. Although the next such excursion is certain to come, little is known about the timing and possible consequences for the state of the atmosphere and the ecosystems. Here we use the global chemistry climate model SOCOL-MPIOM to simulate the effects of geomagnetic excursions on atmospheric ionization, chemistry and dynamics. Our simulations show significantly increased concentrations of nitrogen oxides (NOx) in the entire stratosphere, especially over Antarctica (+15%), due to enhanced ionization by galactic cosmic rays. Hydrogen oxides (HOx) are also produced in greater amounts (up to +40%) in the tropical and subtropical lower stratosphere, while their destruction by reactions with enhanced NOx prevails over the poles and in high altitudes (by −5%). Stratospheric ozone concentrations decrease globally above 20 km by 1–2% and at the northern hemispheric tropopause by up to 5% owing to the accelerated NOx-induced destruction. A 5% increase is found in the southern lower stratosphere and troposphere. In response to these changes in ozone and the concomitant changes in atmospheric heating rates, the Arctic vortex intensifies in boreal winter, while the Antarctic vortex weakens in austral winter and spring. Surface wind anomalies show significant intensification of the southern westerlies at their poleward edge during austral winter and a pronounced northward shift in spring. Major impacts on the global climate seem unlikely.


2020 ◽  
Vol 20 (18) ◽  
pp. 10791-10806 ◽  
Author(s):  
Franziska Schranz ◽  
Jonas Hagen ◽  
Gunter Stober ◽  
Klemens Hocke ◽  
Axel Murk ◽  
...  

Abstract. Middle atmospheric ozone, water vapour and zonal and meridional wind profiles have been measured with the two ground-based microwave radiometers GROMOS-C and MIAWARA-C. The instruments have been located at the Arctic research base AWIPEV at Ny-Ålesund, Svalbard (79∘ N, 12∘ E), since September 2015. GROMOS-C measures ozone spectra in the four cardinal directions with an elevation angle of 22∘. This means that the probed air masses at an altitude of 3 hPa (37 km) have a horizontal distance of 92 km to Ny-Ålesund. We retrieve four separate ozone profiles along the lines of sight and calculate daily mean horizontal ozone gradients which allow us to investigate the small-scale spatial variability of ozone above Ny-Ålesund. We present the evolution of the ozone gradients at Ny-Ålesund during winter 2018/2019, when a major sudden stratospheric warming (SSW) took place with the central date at 2 January, and link it to the planetary wave activity. We further analyse the SSW and discuss our ozone and water vapour measurements in a global context. At 3 hPa we find a distinct seasonal variation of the ozone gradients. The strong polar vortex during October and March results in a decreasing ozone volume mixing ratio towards the pole. In November the amplitudes of the planetary waves grow until they break in the end of December and an SSW takes place. From November until February ozone increases towards higher latitudes and the magnitude of the ozone gradients is smaller than in October and March. We attribute this to the planetary wave activity of wave numbers 1 and 2 which enabled meridional transport. The MERRA-2 reanalysis and the SD-WACCM model are able to capture the small-scale ozone variability and its seasonal changes.


2013 ◽  
Vol 9 (6) ◽  
pp. 6605-6633
Author(s):  
I. Suter ◽  
R. Zech ◽  
J. G. Anet ◽  
T. Peter

Abstract. Geomagnetic events, i.e. short periods in time with much weaker geomagnetic fields and substantial changes in the position of the geomagnetic pole, occurred repeatedly in the Earth's history, e.g. the Laschamp Event about 41 kyr ago. Although the next such event is certain to come, little is known about the timing and possible consequences for the state of the atmosphere and the ecosystems. Here we use the global chemistry climate model SOCOL-MPIOM to simulate the effects of geomagnetic events on atmospheric ionization, chemistry and dynamics. Our simulations show significantly increased concentrations of nitrogen oxides (NOx) in the entire stratosphere, especially over Antarctica (+15%), due to enhanced ionization. Hydrogen oxides (HOx) are also produced in greater amounts (up to +40%) in the tropical and subtropical lower stratosphere, while their destruction by reactions with enhanced NOx prevails over the poles and in high altitudes (by −5%). Stratospheric ozone concentrations decrease globally above 20 km by 1–2% and at the northern hemispheric tropopause by up to 5% owing to the accelerated NOx-induced destruction. A 5% increase is found in the southern lower stratosphere and troposphere. In response to these changes in ozone and the concomitant changes in atmospheric heating rates, the Arctic vortex intensifies in boreal winter, while the Antarctic vortex weakens in austral winter and spring. Surface wind anomalies show significant intensification of the southern westerlies at their poleward edge during austral winter and a pronounced northward shift in spring. This is analogous to today's poleward shift of the westerlies due to the ozone hole. It is challenging to robustly infer precipitation changes from the wind anomalies, and it remains unclear, whether the Laschamp Event could have caused the observed glacial maxima in the southern Central Andes. Moreover, a large impact on the global climate seems unlikely.


2006 ◽  
Vol 6 (6) ◽  
pp. 11299-11316 ◽  
Author(s):  
A. Hauchecorne ◽  
P. Keckhut ◽  
M. L. Chanin

Abstract. The upwelling planetary wave activity (PW) from the troposphere controls the intensity of the equator to pole transport of stratospheric ozone by the Brewer-Dobson circulation and thereby modulates the total ozone content at mid- and high-latitudes. Rayleigh lidar temperature data obtained from 1981 to 2001 at mid-latitude were used to study the interannual variability of PW activity in winter (October to April). The spectrum of stratospheric temperature fluctuations exhibits 2 peaks corresponding to 2 dominant modes of free travelling Rossby waves known as 16 day- and 12 day-waves. The 12 day-wave activity is shown to be anticorrelated with the equatorial QBO wind at 40 hPa. During the period 1981–2000 the global PW activity shows a negative trend for months October to January and a positive trend in March and April.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 625
Author(s):  
Ansgar Schanz ◽  
Klemens Hocke ◽  
Niklaus Kämpfer ◽  
Simon Chabrillat ◽  
Antje Inness ◽  
...  

In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time.


Sign in / Sign up

Export Citation Format

Share Document