scholarly journals Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

2017 ◽  
Vol 17 (19) ◽  
pp. 12011-12030 ◽  
Author(s):  
Mathias Gergely ◽  
Steven J. Cooper ◽  
Timothy J. Garrett

Abstract. The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV) and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

2017 ◽  
Author(s):  
Mathias Gergely ◽  
Steven J. Cooper ◽  
Timothy J. Garrett

Abstract. The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, the microstructure of individual snowflakes is approximated by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and ice surface area-to-volume ratio (SAV) and the bounding volume is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model snowfall triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Additionally, first results are presented for using snowflake complexity values derived from high-resolution multi-view snowflake images as indicator of snowflake SAV. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of a realistic description of snowflake SAV for a quantitative interpretation of snowfall triple-frequency radar signatures.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1453
Author(s):  
Hellen Windolf ◽  
Rebecca Chamberlain ◽  
Julian Quodbach

3D printing offers the advantage of being able to modify dosage form geometry, which can be exploited to modify release characteristics. In this study, we investigated the influence of the surface area to volume ratio (SA/V) to change and predict release profiles of 3D printed dosage forms. Geometries with varying SA/V and dosages were designed and printed, and drug dissolution was investigated. Three drug substances were used: pramipexole, levodopa (both BCS I) and praziquantel (BCS II). Two polymers were chosen as matrix formers: polyvinyl alcohol (water-soluble) and ethylene vinyl acetate (inert). Drug release was characterized using the mean dissolution time (MDT) and established equations that describe complete dissolution curves were applied. Predictions were validated with previously un-printed dosage forms. Based on an identified MDT-SA/V correlation, the MDT can be predicted with a deviation of ≤5 min for a given SA/V. Using correlations of fit parameters and SA/V, RMSEP values of 0.6–2.8% and 1.6–3.4% were obtained for the BCS I formulations and RMSEP values of 1.0–3.8% were obtained for the BCS II formulation, indicating accurate prediction over a wide range of dissolution profiles. With this approach, MDT and release profiles of dosage forms with a given SA/V can be precisely predicted without performing dissolution tests and vice versa, the required SA/V can be predicted for a desired release profile.


Diversity ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 44 ◽  
Author(s):  
Neil Doszpot ◽  
Michael McWilliam ◽  
Morgan Pratchett ◽  
Andrew Hoey ◽  
Will Figueira

Scleractinian corals often exhibit high levels of morphological plasticity, which is potentially important in enabling individual species to occupy benthic spaces across a wide range of environmental gradients. This study tested for differences in the three-dimensional (3D) geometry of three branching corals, Acropora nasuta, Pocillopora spp. and Stylophora pistillata among inner-, mid- and outer-shelf reefs in the central Great Barrier Reef, Australia. Important attributes of coral morphology (e.g., surface area to volume ratio) were expected to vary linearly across the shelf in accordance with marked gradients in environmental conditions, but instead, we detected non-linear trends in the colony structure of A. nasuta and Pocillopora spp. The surface area to volume ratio of both A. nasuta and Pocillopora spp. was highest at mid-shelf locations, (reflecting higher colony complexity) and was significantly lower at both inner-shelf and outer-shelf reefs. The branching structure of these corals was also far more tightly packed at inner-shelf and outer-shelf reefs, compared to mid-shelf reefs. Apparent declines in complexity and inter-branch spacing at inner and outer-shelf reefs (compared to conspecifics from mid-shelf reefs) may reflect changes driven by gradients of sedimentation and hydrodynamics. The generality and explanations of observed patterns warrant further investigation, which is very feasible using the 3D-photogrammetry techniques used in this study.


Author(s):  
Glynn P. Adams ◽  
John E. Beard

Abstract This study investigates the displacement, compression ratio and surface area to volume ratio of epitrochoidal gerotor mechanisms created with non-uniform cross sectional areas perpendicular to the rotor axis of rotation, skew gerotors. An algorithm is presented for modelling the gerotor mechanisms using a quadratic surface as the generating pin. The method used to model the skew gerotors consists of rotating the axis of the generating pin such that it is skewed relative to the rotor axis of rotation. The resulting effects on the displacement, compression ratio and surface area to volume ratio are presented for various configurations.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 899 ◽  
Author(s):  
Francesco Ruffino ◽  
Maria Grazia Grimaldi

In recent years, the field of nanoporous metals has undergone accelerated developments as these materials possess high specific surface areas, well-defined pore sizes, functional sites, and a wide range of functional properties. Nanoporous gold (NPG) is, surely, the most attractive system in the class of nanoporous metals: it combines several desired characteristics as occurrence of surface plasmon resonances, enormous surface area, electrochemical activity, biocompatibility, in addition to feasibility in preparation. All these properties concur in the exploitatiton of NPG as an efficient and versatile sensong platform. In this regard, NPG-based sensors have shown exceptional sensitivity and selectivity to a wide range of analytes ranging from molecules to biomolecules (and until the single molecule detection) and the enormous surface/volume ratio was shown to be crucial in determining these performances. Thanks to these characteristics, NPG-based sensors are finding applications in medical, biological, and safety fields so as in medical diagnostics and monitoring processes. So, a rapidly growing literature is currently investigating the properties of NPG systems toward the detection of a multitude of classes of analytes highlighting strengths and limits. Due to the extension, complexity, and importance of this research field, in the present review we attempt, starting from the discussion of specific cases, to focus our attention on the basic properties of NPG in connection to the main sensing applications, i.e., surface enhanced Raman spectroscopy-based and electrochemical-based sensing. Owing to the nano-sized pore channels and Au ligaments, which are much smaller than the wavelength of visible light (400–700 nm), surface plasmon resonances of NPG can be effectively excited by visible light and presents unique features compared with other nanostructured metals, such as nanoparticles, nanorods, and nanowires. This characteristics leads to optical sensors exploiting NPG through unique surface plasmon resonance properties that can be monitored by UV-Vis, Raman, or fluorescence spectroscopy. On the other hand, the catalytic properties of NPG are exploited electrochemical sensors are on the electrical signal produced by a specific analyte adsorbed of the NPG surface. In this regard, the enourmous NPG surface area is crucial in determining the sensitivity enhancement. Due to the extension, complexity, and importance of the NPG-based sensing field, in the present review we attempt, starting from the discussion of specific cases, to focus our attention on the basic properties of NPG in connection to the main sensing applications, i.e., surface enhanced Raman spectroscopy-based and electrochemical-based sensing. Starting from the discussion of the basic morphological/structural characteristics of NPG as obtained during the fabrication step and post-fabrication processes, the review aims to a comprehensive schematization of the main classes of sensing applications highlighting the basic involved physico-chemical properties and mechanisms. In each discussed specific example, the main involved parameters and processes governing the sensing mechanism are elucidated. In this way, the review aims at establishing a general framework connecting the processes parameters to the characteristics (pore size, etc.) of the NPG. Some examples are discussed concerning surface plasmon enhanced Uv-Vis, Raman, fluorescence spectroscopy in order to realize efficient NPG-based optical sesnors: in this regard, the underlaying connections between NPG structural/morphological properties and the optical response and, hence, the optical-based sensing performances are described and analyzed. Some other examples are discussed concerning the exploitation of the electrochemical characteristics of NPG for ultra-high sensitivity detection of analytes: in this regard, the key parameters determing the NPG activity and selectivity selectivity toward a variety of reactants are discussed, as high surface-to-volume ratio and the low coordination of surface atoms. In addition to the use of standard NPG films and leafs as sensing platforms, also the role of hybrid NPG-based nanocomposites and of nanoporous Au nanostructures is discussed due to the additional increase of the electrocatalytic acticvity and of exposed surface area resulting in the possible further sensitivity increase.


2018 ◽  
Vol 9 (1) ◽  
pp. 79-84
Author(s):  
Vaishali V. Shahare ◽  
Rajni Grover ◽  
Suman Meena

Background: The persistent dioxins/furans has caused a worldwide concern as they influence the human health. Recent research indicates that nonmaterial may prove effective in the degradation of Dioxins/furans. The nanomaterials are very reactive owing to their large surface area to volume ratio and large number of reactive sites. However, nanotechnology applications face both the challenges and the opportunities to influence the area of environmental protection. Objective: i) To study the impact of oil mediated UV-irradiations on the removal of 2,3,7,8-TCDD, 2,3,7,8-TCDF, OCDD and OCDF in simulated soil samples. ii) To compare the conventional treatment methods with the modern available nanotechniques for the removal of selected Dioxins/furans from soil samples. Methods: The present work has investigated an opportunity of the degradation of tetra and octachlorinated dioxins and furans by using oil mediated UV radiations with subsequent extraction of respective dioxins/furans from soils. The results have been compared with the available nanotechniques. Results: The dioxin congeners in the simulated soil sample showed decrease in concentration with the increase in the exposure time and intensity of UV radiations. The dechlorination of PCDD/Fs using palladized iron has been found to be effective. Conclusion: Both the conventional methods and nanotechnology have a dramatic impact on the removal of Dioxins/furans in contaminated soil. However, the nanotechniques are comparatively costlier and despite the relatively high rates of PCDDs dechlorination by Pd/nFe, small fraction of the dioxins are recalcitrant to degradation over considerable exposure times.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 72
Author(s):  
Clementina Agodi ◽  
Antonio D. Russo ◽  
Luciano Calabretta ◽  
Grazia D’Agostino ◽  
Francesco Cappuzzello ◽  
...  

The search for neutrinoless double-beta (0νββ) decay is currently a key topic in physics, due to its possible wide implications for nuclear physics, particle physics, and cosmology. The NUMEN project aims to provide experimental information on the nuclear matrix elements (NMEs) that are involved in the expression of 0νββ decay half-life by measuring the cross section of nuclear double-charge exchange (DCE) reactions. NUMEN has already demonstrated the feasibility of measuring these tiny cross sections for some nuclei of interest for the 0νββ using the superconducting cyclotron (CS) and the MAGNEX spectrometer at the Laboratori Nazionali del Sud (LNS.) Catania, Italy. However, since the DCE cross sections are very small and need to be measured with high sensitivity, the systematic exploration of all nuclei of interest requires major upgrade of the facility. R&D for technological tools has been completed. The realization of new radiation-tolerant detectors capable of sustaining high rates while preserving the requested resolution and sensitivity is underway, as well as the upgrade of the CS to deliver beams of higher intensity. Strategies to carry out DCE cross-section measurements with high-intensity beams were developed in order to achieve the challenging sensitivity requested to provide experimental constraints to 0νββ NMEs.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 719
Author(s):  
Shahrooz Rahmati ◽  
William Doherty ◽  
Arman Amani Babadi ◽  
Muhamad Syamim Akmal Che Mansor ◽  
Nurhidayatullaili Muhd Julkapli ◽  
...  

The environmental crisis, due to the rapid growth of the world population and globalisation, is a serious concern of this century. Nanoscience and nanotechnology play an important role in addressing a wide range of environmental issues with innovative and successful solutions. Identification and control of emerging chemical contaminants have received substantial interest in recent years. As a result, there is a need for reliable and rapid analytical tools capable of performing sample analysis with high sensitivity, broad selectivity, desired stability, and minimal sample handling for the detection, degradation, and removal of hazardous contaminants. In this review, various gold–carbon nanocomposites-based sensors/biosensors that have been developed thus far are explored. The electrochemical platforms, synthesis, diverse applications, and effective monitoring of environmental pollutants are investigated comparatively.


Sign in / Sign up

Export Citation Format

Share Document