scholarly journals Assessing the uncertainty of soil moisture impacts on convective precipitation using a new ensemble approach

2018 ◽  
Vol 18 (9) ◽  
pp. 6413-6425 ◽  
Author(s):  
Olga Henneberg ◽  
Felix Ament ◽  
Verena Grützun

Abstract. Soil moisture amount and distribution control evapotranspiration and thus impact the occurrence of convective precipitation. Many recent model studies demonstrate that changes in initial soil moisture content result in modified convective precipitation. However, to quantify the resulting precipitation changes, the chaotic behavior of the atmospheric system needs to be considered. Slight changes in the simulation setup, such as the chosen model domain, also result in modifications to the simulated precipitation field. This causes an uncertainty due to stochastic variability, which can be large compared to effects caused by soil moisture variations. By shifting the model domain, we estimate the uncertainty of the model results. Our novel uncertainty estimate includes 10 simulations with shifted model boundaries and is compared to the effects on precipitation caused by variations in soil moisture amount and local distribution. With this approach, the influence of soil moisture amount and distribution on convective precipitation is quantified. Deviations in simulated precipitation can only be attributed to soil moisture impacts if the systematic effects of soil moisture modifications are larger than the inherent simulation uncertainty at the convection-resolving scale.We performed seven experiments with modified soil moisture amount or distribution to address the effect of soil moisture on precipitation. Each of the experiments consists of 10 ensemble members using the deep convection-resolving COSMO model with a grid spacing of 2.8 km. Only in experiments with very strong modification in soil moisture do precipitation changes exceed the model spread in amplitude, location or structure. These changes are caused by a 50 % soil moisture increase in either the whole or part of the model domain or by drying the whole model domain. Increasing or decreasing soil moisture both predominantly results in reduced precipitation rates. Replacing the soil moisture with realistic fields from different days has an insignificant influence on precipitation. The findings of this study underline the need for uncertainty estimates in soil moisture studies based on convection-resolving models.

2011 ◽  
Vol 11 (20) ◽  
pp. 10389-10406 ◽  
Author(s):  
C. Hohenegger ◽  
C. S. Bretherton

Abstract. Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES) as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM). Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle. Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.


2011 ◽  
Vol 11 (3) ◽  
pp. 8385-8430 ◽  
Author(s):  
C. Hohenegger ◽  
C. S. Bretherton

Abstract. Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES) as a benchmark to test and refine a unified convection scheme implemented in the Single-Column Community Atmosphere Model (SCAM). Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle. Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.


2017 ◽  
Vol 30 (3) ◽  
pp. 921-938 ◽  
Author(s):  
Shiori Sugimoto ◽  
Hiroshi G. Takahashi

Abstract Precipitation sensitivity to soil moisture and its seasonal and diurnal changes are investigated in Bangladesh and surrounding regions using a regional climate model with a 5-km grid spacing. In the control experiment, soil moisture is calculated by a land surface scheme, and simulated accuracy of seasonal and diurnal variations in precipitation intensity and frequency is capable of assessing the soil moisture impact on precipitation. In sensitivity experiments with wetter land surfaces, daytime precipitation intensity decreases over the southern plains for both the premonsoon and mature monsoon seasons because of the weakening of surface heating and vertical mixing in the planetary boundary layer (PBL). Weakened vertical turbulent flux of moisture reduces condensation heating and upward motion in the mid- and upper troposphere, which suppresses development of convective precipitation. The simulated precipitation intensity response to soil moisture suggests that land surface wetness contributes to the seasonal contrast in observed precipitation intensity (i.e., stronger in the premonsoon than the mature monsoon seasons). Meanwhile, the precipitation frequency response to soil moisture varies with season and by region. Over the southern plains in the wet land surface experiments, daytime precipitation frequency decreases (increases) during the premonsoon (mature monsoon) season compared with the dry land surface experiments, as influenced by seasonal differences in relative humidity and the condensation process in the lower troposphere. Around the northern mountainous area, higher soil moisture increases precipitation frequency regardless of season because of additional water vapor supply from the ground and frequent orographic precipitation forced by the mountainous topography.


2014 ◽  
Vol 71 (11) ◽  
pp. 3902-3930 ◽  
Author(s):  
Sungsu Park

Abstract The author develops a unified convection scheme (UNICON) that parameterizes relative (i.e., with respect to the grid-mean vertical flow) subgrid vertical transport by nonlocal asymmetric turbulent eddies. UNICON is a process-based model of subgrid convective plumes and mesoscale organized flow without relying on any quasi-equilibrium assumptions such as convective available potential energy (CAPE) or convective inhibition (CIN) closures. In combination with a relative subgrid vertical transport scheme by local symmetric turbulent eddies and a grid-scale advection scheme, UNICON simulates vertical transport of water species and conservative scalars without double counting at any horizontal resolution. UNICON simulates all dry–moist, forced–free, and shallow–deep convection within a single framework in a seamless, consistent, and unified way. It diagnoses the vertical profiles of the macrophysics (fractional area, plume radius, and number density) as well as the microphysics (production and evaporation rates of convective precipitation) and the dynamics (mass flux and vertical velocity) of multiple convective updraft and downdraft plumes. UNICON also prognoses subgrid cold pool and mesoscale organized flow within the planetary boundary layer (PBL) that is forced by evaporation of convective precipitation and accompanying convective downdrafts but damped by surface flux and entrainment at the PBL top. The combined subgrid parameterization of diagnostic convective updraft and downdraft plumes, prognostic subgrid mesoscale organized flow, and the feedback among them remedies the weakness of conventional quasi-steady diagnostic plume models—the lack of plume memory across the time step—allowing UNICON to successfully simulate various transitional phenomena associated with convection (e.g., the diurnal cycle of precipitation and the Madden–Julian oscillation).


2014 ◽  
Vol 142 (12) ◽  
pp. 4850-4871 ◽  
Author(s):  
Max R. Marchand ◽  
Henry E. Fuelberg

Abstract This study presents a new method for assimilating lightning data into numerical models that is suitable at convection-permitting scales. The authors utilized data from the Earth Networks Total Lightning Network at 9-km grid spacing to mimic the resolution of the Geostationary Lightning Mapper (GLM) that will be on the Geostationary Operational Environmental Satellite-R (GOES-R). The assimilation procedure utilizes the numerical Weather Research and Forecasting (WRF) Model. The method (denoted MU) warms the most unstable low levels of the atmosphere at locations where lightning was observed but deep convection was not simulated based on the absence of graupel. Simulation results are compared with those from a control simulation and a simulation employing the lightning assimilation method developed by Fierro et al. (denoted FO) that increases water vapor according to a nudging function that depends on the observed flash rate and simulated graupel mixing ratio. Results are presented for three severe storm days during 2011 and compared with hourly NCEP stage-IV precipitation observations. Compared to control simulations, both the MU and FO assimilation methods produce improved simulated precipitation fields during the assimilation period and a short time afterward based on subjective comparisons and objective statistical scores (~0.1, or 50%, improvement of equitable threat scores). The MU generally performs better at simulating isolated thunderstorms and other weakly forced deep convection, while FO performs better for the case having strong synoptic forcing. Results show that the newly developed MU method is a viable alternative to the FO method, exhibiting utility in producing thunderstorms where observed, and providing improved analyses at low computational cost.


2009 ◽  
Vol 10 (4) ◽  
pp. 1026-1039 ◽  
Author(s):  
Benjamin R. Lintner ◽  
J. David Neelin

Abstract An idealized prototype for the location of the margins of tropical land region convection zones is extended to incorporate the effects of soil moisture and associated evaporation. The effect of evaporation, integrated over the inflow trajectory into the convection zone, is realized nonlocally where the atmosphere becomes favorable to deep convection. This integrated effect produces “hot spots” of land surface–atmosphere coupling downstream of soil moisture conditions. Overall, soil moisture increases the variability of the convective margin, although how it does so is nontrivial. In particular, there is an asymmetry in displacements of the convective margin between anomalous inflow and outflow conditions that is absent when soil moisture is not included. Furthermore, the simple cases presented here illustrate how margin sensitivity depends strongly on the interplay of factors, including net top-of-the-atmosphere radiative heating, the statistics of inflow wind, and the convective parameterization.


2011 ◽  
Vol 26 (6) ◽  
pp. 785-807 ◽  
Author(s):  
Jonathan L. Case ◽  
Sujay V. Kumar ◽  
Jayanthi Srikishen ◽  
Gary J. Jedlovec

Abstract It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high-resolution models. This paper presents model verification results of a case study period from June to August 2008 over the southeastern United States using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the National Aeronautics and Space Administration’s (NASA) Land Information System (LIS) and sea surface temperatures (SSTs) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction’s (NCEP) 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spinup run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS–MODIS data substantially impact surface and boundary layer properties. The Developmental Testbed Center’s Meteorological Evaluation Tools package is employed to produce verification statistics, including traditional gridded precipitation verification and output statistics from the Method for Object-Based Diagnostic Evaluation (MODE) tool. The LIS–MODIS initialization is found to produce small improvements in the skill scores of 1-h accumulated precipitation during the forecast hours of the peak diurnal convective cycle. Because there is very little union in time and space between the forecast and observed precipitation systems, results from the MODE object verification are examined to relax the stringency of traditional gridpoint precipitation verification. The MODE results indicate that the LIS–MODIS-initialized model runs increase the 10 mm h−1 matched object areas (“hits”) while simultaneously decreasing the unmatched object areas (“misses” plus “false alarms”) during most of the peak convective forecast hours, with statistically significant improvements of up to 5%. Simulated 1-h precipitation objects in the LIS–MODIS runs more closely resemble the observed objects, particularly at higher accumulation thresholds. Despite the small improvements, however, the overall low verification scores indicate that much uncertainty still exists in simulating the processes responsible for airmass-type convective precipitation systems in convection-allowing models.


2018 ◽  
Vol 22 (6) ◽  
pp. 3275-3294 ◽  
Author(s):  
Irina Y. Petrova ◽  
Chiel C. van Heerwaarden ◽  
Cathy Hohenegger ◽  
Françoise Guichard

Abstract. The magnitude and sign of soil moisture–precipitation coupling (SMPC) is investigated using a probability-based approach and 10 years of daily microwave satellite data across North Africa at a 1∘ horizontal scale. Specifically, the co-existence and co-variability of spatial (i.e. using soil moisture gradients) and temporal (i.e. using soil moisture anomaly) soil moisture effects on afternoon rainfall is explored. The analysis shows that in the semi-arid environment of the Sahel, the negative spatial and the negative temporal coupling relationships do not only co-exist, but are also dependent on one another. Hence, if afternoon rain falls over temporally drier soils, it is likely to be surrounded by a wetter environment. Two regions are identified as SMPC “hot spots”. These are the south-western part of the domain (7–15∘ N, 10∘ W–7∘ E), with the most robust negative SMPC signal, and the South Sudanese region (5–13∘ N, 24–34∘ E). The sign and significance of the coupling in the latter region is found to be largely modulated by the presence of wetlands and is susceptible to the number of long-lived propagating convective systems. The presence of wetlands and an irrigated land area is found to account for about 30 % of strong and significant spatial SMPC in the North African domain. This study provides the first insight into regional variability of SMPC in North Africa, and supports the potential relevance of mechanisms associated with enhanced sensible heat flux and mesoscale variability in surface soil moisture for deep convection development.


2010 ◽  
Vol 4 (1) ◽  
pp. 89-98 ◽  
Author(s):  
C. Wittmann ◽  
T. Haiden ◽  
A. Kann

Abstract. The SAL (Structure, Amplitude, Location) method is used for verification of precipitation forecasts at horizontal grid spacings ranging from 2.5 km to 25 km, using a high-resolution 1 km precipitation analysis as a reference. The verification focuses on a summertime period with predominantly convective precipitation. The verification domain contains lowland as well as alpine areas. Evaluation of the individual SAL components shows that with regard to area mean values (A) the benefit of high resolutions models becomes apparent only in high impact weather situations. For the summertime period studied, the subjective impression of better structured precipitation fields (S) in higher resolution models can generally be confirmed. The most significant improvement appears to be associated with explicit simulation of deep convection.


Sign in / Sign up

Export Citation Format

Share Document