scholarly journals The impact of recent changes in Asian anthropogenic emissions of SO<sub>2</sub> on sulfate loading in the upper troposphere and lower stratosphere and the associated radiative changes

2019 ◽  
Vol 19 (15) ◽  
pp. 9989-10008 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
Gayatry Kalita ◽  
Matthew Rowlinson ◽  
Alexandru Rap ◽  
...  

Abstract. Convective transport plays a key role in aerosol enhancement in the upper troposphere and lower stratosphere (UTLS) over the Asian monsoon region where low-level convective instability persists throughout the year. We use the state-of-the-art ECHAM6–HAMMOZ global chemistry–climate model to investigate the seasonal transport of anthropogenic Asian sulfate aerosols and their impact on the UTLS. Sensitivity simulations for SO2 emission perturbation over India (48 % increase) and China (70 % decrease) are performed based on the Ozone Monitoring Instrument (OMI) satellite-observed trend, rising over India by ∼4.8 % per year and decreasing over China by ∼7.0 % per year during 2006–2017. The enhanced Indian emissions result in an increase in aerosol optical depth (AOD) loading in the UTLS by 0.61 to 4.17 % over India. These aerosols are transported to the Arctic during all seasons by the lower branch of the Brewer–Dobson circulation enhancing AOD by 0.017 % to 4.8 %. Interestingly, a reduction in SO2 emission over China inhibits the transport of Indian sulfate aerosols to the Arctic in summer-monsoon and post-monsoon seasons due to subsidence over northern India. The region of sulfate aerosol enhancement shows significant warming in the UTLS over northern India, south China (0.2±0.15 to 0.8±0.72 K) and the Arctic (∼1±0.62 to 1.6±1.07 K). The estimated seasonal mean direct radiative forcing at the top of the atmosphere (TOA) induced by the increase in Indian SO2 emission is −0.2 to −1.5 W m−2 over northern India. The Chinese SO2 emission reduction leads to a positive radiative forcing of ∼0.6 to 6 W m−2 over China. The decrease in vertical velocity and the associated enhanced stability of the upper troposphere in response to increased Indian SO2 emissions will likely decrease rainfall over India.

2019 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Gayatry Kalita ◽  
Matthew Rowlinson ◽  
Alexandru Rap ◽  
Jui-Lin Frank Li ◽  
...  

Abstract. The Asian summer monsoon plays a key role in changing aerosol amounts in the upper troposphere and lower stratosphere (UTLS) via convective transport. Here, we use the ECHAM6-HAMMOZ global chemistry–climate model to investigate the transport of anthropogenic South Asian sulfate aerosols and their impact on the UTLS. Our experiments (ten-member ensemble) with SO2 emissions enhanced by 48 % over South Asia, based on an Ozone Monitoring Instrument (OMI) satellite observed rising trend of ~ 4.8 % per year during 2006–2017, simulate how the Asian sulfate aerosols are convectively transported to the UTLS. The tropospheric increase in SO2 leads to an increase in UTLS sulfate aerosol loading of 10–33 % over South Asia and 5–10 % over the high latitudes in the northern hemisphere. The enhanced sulfate aerosols lead to warming (0.1 ± 0.06 to 0.6 ± 0.25 K) in the lowermost stratosphere and cooling (−0.1 ± 0.06 to −0.8 ± 0.41 K) in the troposphere in the Northern Hemisphere. The estimated mean direct radiative forcing at the top of the atmosphere (TOA) induced by the increase in South Asian aerosol emissions is −0.2 to −1.5 W m−2 over north India during the monsoon season. The decrease in vertical velocity and the associated enhanced stability of the upper troposphere in response to increased SO2 emissions will likely have a weakening effect on the South Asian monsoon.


2019 ◽  
Vol 19 (6) ◽  
pp. 3589-3620 ◽  
Author(s):  
Ryan S. Williams ◽  
Michaela I. Hegglin ◽  
Brian J. Kerridge ◽  
Patrick Jöckel ◽  
Barry G. Latter ◽  
...  

Abstract. The stratospheric contribution to tropospheric ozone (O3) has been a subject of much debate in recent decades but is known to have an important influence. Recent improvements in diagnostic and modelling tools provide new evidence that the stratosphere has a much larger influence than previously thought. This study aims to characterise the seasonal and geographical distribution of tropospheric ozone, its variability, and its changes and provide quantification of the stratospheric influence on these measures. To this end, we evaluate hindcast specified-dynamics chemistry–climate model (CCM) simulations from the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model and the Canadian Middle Atmosphere Model (CMAM), as contributed to the International Global Atmospheric Chemistry – Stratosphere-troposphere Processes And their Role in Climate (IGAC-SPARC) (IGAC–SPARC) Chemistry Climate Model Initiative (CCMI) activity, together with satellite observations from the Ozone Monitoring Instrument (OMI) and ozone-sonde profile measurements from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) over a period of concurrent data availability (2005–2010). An overall positive, seasonally dependent bias in 1000–450 hPa (∼0–5.5 km) sub-column ozone is found for EMAC, ranging from 2 to 8 Dobson units (DU), whereas CMAM is found to be in closer agreement with the observations, although with substantial seasonal and regional variation in the sign and magnitude of the bias (∼±4 DU). Although the application of OMI averaging kernels (AKs) improves agreement with model estimates from both EMAC and CMAM as expected, comparisons with ozone-sondes indicate a positive ozone bias in the lower stratosphere in CMAM, together with a negative bias in the troposphere resulting from a likely underestimation of photochemical ozone production. This has ramifications for diagnosing the level of model–measurement agreement. Model variability is found to be more similar in magnitude to that implied from ozone-sondes in comparison with OMI, which has significantly larger variability. Noting the overall consistency of the CCMs, the influence of the model chemistry schemes and internal dynamics is discussed in relation to the inter-model differences found. In particular, it is inferred that CMAM simulates a faster and shallower Brewer–Dobson circulation (BDC) compared to both EMAC and observational estimates, which has implications for the distribution and magnitude of the downward flux of stratospheric ozone over the most recent climatological period (1980–2010). Nonetheless, it is shown that the stratospheric influence on tropospheric ozone is significant and is estimated to exceed 50 % in the wintertime extratropics, even in the lower troposphere. Finally, long-term changes in the CCM ozone tracers are calculated for different seasons. An overall statistically significant increase in tropospheric ozone is found across much of the world but particularly in the Northern Hemisphere and in the middle to upper troposphere, where the increase is on the order of 4–6 ppbv (5 %–10 %) between 1980–1989 and 2001–2010. Our model study implies that attribution from stratosphere–troposphere exchange (STE) to such ozone changes ranges from 25 % to 30 % at the surface to as much as 50 %–80 % in the upper troposphere–lower stratosphere (UTLS) across some regions of the world, including western Eurasia, eastern North America, the South Pacific and the southern Indian Ocean. These findings highlight the importance of a well-resolved stratosphere in simulations of tropospheric ozone and its implications for the radiative forcing, air quality and oxidation capacity of the troposphere.


2020 ◽  
Author(s):  
Hao Ye ◽  
Michaela Hegglin ◽  
Martina Krämer ◽  
Christian Rolf ◽  
Alexandra Laeng ◽  
...  

&lt;p&gt;Water vapour in the upper troposphere and lower stratosphere (UTLS) has a significant impact both on the radiative and chemical properties of the atmosphere. Reliable water vapour observations are essential for the evaluation of the accuracy of UTLS water vapour from model simulations, and thereafter of the contribution to the global radiative forcing and climate change. Limb-viewing and nadir satellites provide high quality water vapour observations above the lower stratosphere and below the upper troposphere, respectively, but show large uncertainties in the tropopause region.&lt;span&gt;&amp;#160; &lt;/span&gt;Within the ESA Water Vapour Climate Change Initiative, we have developed a new scheme to optimally estimate water vapour profiles in the UTLS and in particular across the tropopause, by merging observations from a set of limb and nadir satellites from 2010 to 2014. The new data record of vertically resolved water vapour is validated against the aircraft in-situ water vapour observations from the JULIA database and frostpoint hydrometer records from WAVAS. Furthermore, the new data record is used to evaluate the UTLS water vapour distribution and interannual variations from chemistry-climate model (CCM) simulations and the ERA-5 reanalysis.&lt;/p&gt;


2013 ◽  
Vol 6 (1) ◽  
pp. 331-378 ◽  
Author(s):  
H. Wang ◽  
R. C. Easter ◽  
P. J. Rasch ◽  
M. Wang ◽  
X. Liu ◽  
...  

Abstract. Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in the Arctic winter (summer) BC burden. This BC aging treatment, however, has minimal effect on other under-predicted species. Interestingly, our modifications to CAM5 that aim at improving prediction of high-latitude and upper tropospheric aerosols also produce much better aerosol optical depth over various other regions globally when compared to multi-year AERONET retrievals. The improved aerosol distributions have impacts on other aspects of CAM5, improving the simulation of global mean liquid water path and cloud forcing.


2018 ◽  
Author(s):  
Ryan S. Williams ◽  
Michaela I. Hegglin ◽  
Brian J. Kerridge ◽  
Patrick Jöckel ◽  
Barry G. Latter ◽  
...  

Abstract. The stratospheric contribution to tropospheric ozone (O3) has been a subject of much debate in recent decades, but is known to have an important influence. Recent improvements in diagnostic and modelling tools provide new evidence that the stratosphere has a much larger influence than previously thought. This study aims to characterise the seasonal and geographical distribution of tropospheric ozone, its variability and changes, and provide quantification of the stratospheric influence on these measures. To this end, we evaluate hindcast specified dynamics chemistry-climate model (CCM) simulations from the ECHAM/MESSy Atmospheric Chemistry (EMAC) model and the Canadian Middle Atmosphere Model (CMAM), as contributed to the IGAC/SPARC Chemistry Climate Model Initiative (CCMI) activity, together with satellite observations from the Ozone Monitoring Instrument (OMI) and ozonesonde profile measurements from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) over a period of concurrent data availability (2005–2010). An overall positive, seasonally dependent bias in 1000–450 hPa (~ 0–5.5 km) subcolumn ozone is found for EMAC, ranging from 2–8 Dobson Units (DU), whereas CMAM is found to be in closer agreement with the observations, although with substantial seasonal and regional variation in the sign and magnitude of the bias (~ −4 to +4 DU). Although the application of OMI averaging kernels (AKs) improves agreement with model estimates from both EMAC and CMAM as expected, comparisons with ozonesondes indicate a positive ozone bias in the lower stratosphere in CMAM, together with an underestimation of photochemical ozone production (negative bias) in the troposphere. Model variability is found to be more similar in magnitude to that implied from ozonesondes, in comparison with OMI which has significantly larger variability. Noting the overall consistency of the CCMs, the influence of the model chemistry schemes and internal dynamics is discussed in relation to the inter-model differences found. In particular, it is shown that CMAM simulates a faster and shallower Brewer-Dobson Circulation (BDC) relative to both EMAC and observational estimates, which has implications for the distribution and magnitude of the downward flux of stratospheric ozone, over the most recent climatological period (1980–2010). Nonetheless, it is shown that the stratospheric influence on tropospheric ozone is larger than previously thought and is estimated to exceed 50 % in the wintertime extratropics, even in the lower troposphere. Finally, long term changes in the CCM ozone tracers are calculated for different seasons between 1980–89 and 2001–10. An overall statistically significant increase in tropospheric ozone is found across much of the world, but particularly in the Northern Hemisphere and in the middle to upper troposphere, where the increase is on the order of 4–6 ppbv (5–10 %). Our model study implies that attribution from stratosphere-troposphere exchange (STE) to such ozone changes ranges from 25–30 % at the surface to as much as 50–80 % in the upper troposphere-lower stratosphere (UTLS) across many regions of the world. These findings highlight the importance of a well-resolved stratosphere in simulations of tropospheric ozone and its implications for the radiative forcing, air quality and oxidation capacity of the troposphere.


2016 ◽  
Author(s):  
Chaitri Roy ◽  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
Ayantika Dey Chaudhary ◽  
Felix Ploeger

Abstract. Asian summer monsoon convection plays an important role in efficient vertical transport from the surface to the anticyclone. In this paper we investigate the potential impact of convectively transported anthropogenic nitrogen oxides (NOx) on the distribution of ozone in the Upper Troposphere and Lower Stratosphere (UTLS) from simulations with the fully-coupled aerosol chemistry climate model, ECHAM5-HAMMOZ. We performed anthropogenic NOx emission sensitivity experiments over India and China. In these simulations, anthropogenic NOx emissions for the period 2000–2010 have been increased by 38 % over India and by 73 % over China in accordance with satellite observed trends over India of 3.8 % per year and China of 7.3 % per year. These NOx emission sensitivity simulations show that strong convection over the Bay of Bengal and the Southern slopes of the Himalayas transports Indian emissions into the UTLS. Convective transport from the South China Sea injects Chinese emissions into the lower stratosphere. Indian and Chinese emissions are partially transported over the Arabian Sea and west Asia by the tropical easterly jet. Enhanced NOx emissions over India and China increase the ozone radiative forcing over India by 0.112 W/m2 and 0.121 W/m2 respectively. These elevated emissions produces significant warming over the Tibetan Plateau and increase precipitation over India due to a strengthening of the monsoon Hadley circulation. However doubling of NOx emissions over India (73 %); equal to China, produced high ozone in the lower troposphere. It induced a reverse monsoon Hadley circulation and negative precipitation anomalies over India. The associated subsidence suppressed vertical transport of NOx and ozone into the anticyclone.


2021 ◽  
Vol 21 (18) ◽  
pp. 14371-14384
Author(s):  
Prashant Chavan ◽  
Suvarna Fadnavis ◽  
Tanusri Chakroborty ◽  
Christopher E. Sioris ◽  
Sabine Griessbach ◽  
...  

Abstract. Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. From ECHAM6–HAMMOZ model simulations and satellite observations, we show that there is an outflow of Asian BB carbonaceous aerosols into the upper troposphere and lower stratosphere (UTLS) (black carbon: 0.1 to 6 ng m−3 and organic carbon: 0.2 to 10 ng m−3) during the spring season. The model simulations show that the greatest transport of BB carbonaceous aerosols into the UTLS occurs from the Indochina and East Asia region by deep convection over the Malay Peninsula and Indonesia. The increase in BB carbonaceous aerosols enhances atmospheric heating by 0.001 to 0.02 K d−1 in the UTLS. The aerosol-induced heating and circulation changes increase the water vapor mixing ratios in the upper troposphere (by 20–80 ppmv) and in the lowermost stratosphere (by 0.02–0.3 ppmv) over the tropics. Once in the lower stratosphere, water vapor is further transported to the South Pole by the lowermost branch of the Brewer–Dobson circulation. These aerosols enhance the in-atmosphere radiative forcing (0.68±0.25 to 5.30±0.37 W m−2), exacerbating atmospheric warming, but produce a cooling effect on climate (top of the atmosphere – TOA: -2.38±0.12 to -7.08±0.72 W m−2). The model simulations also show that Asian carbonaceous aerosols are transported to the Arctic in the troposphere. The maximum enhancement in aerosol extinction is seen at 400 hPa (by 0.0093 km−1) and associated heating rates at 300 hPa (by 0.032 K d−1) in the Arctic.


2013 ◽  
Vol 6 (3) ◽  
pp. 765-782 ◽  
Author(s):  
H. Wang ◽  
R. C. Easter ◽  
P. J. Rasch ◽  
M. Wang ◽  
X. Liu ◽  
...  

Abstract. Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as the upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol–climate model that explicitly represents convection and aerosol–cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the subgrid-scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a 10-fold (5-fold) increase in the winter (summer) months, resulting in a much-better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in the Arctic winter (summer) BC burden. This BC aging treatment, however, has minimal effect on other underpredicted species. Interestingly, our modifications to CAM5 that aim at improving prediction of high-latitude and upper-tropospheric aerosols also produce much-better aerosol optical depth (AOD) over various other regions globally when compared to multi-year AERONET retrievals. The improved aerosol distributions have impacts on other aspects of CAM5, improving the simulation of global mean liquid water path and cloud forcing.


2021 ◽  
Author(s):  
Prashant Chavan ◽  
Suvarna Fadnavis ◽  
Tanusri Chakroborty ◽  
Christopher E. Sioris ◽  
Sabine G. Griessbach ◽  
...  

Abstract. Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. From ECHAM6-HAMMOZ model simulations and satellite observations, we show that there is an outflow of Asian BB carbonaceous aerosols into the Upper Troposphere and Lower Stratosphere (UTLS) (black carbon: 0.1 to 4 ng m−3 and organic carbon: 0.6 to 9 ng m−3) during the spring season. The model simulations show that the greatest transport of BB carbonaceous aerosols into the UTLS occurs from the Indochina and East Asia region by deep convection over the maritime continent that extends to the Bay of Bengal and the South China Sea. The increase in BB carbonaceous aerosols enhances atmospheric heating by 0.002 to 0.02 K day−1 in the UTLS. The aerosol-induced heating and circulation changes increase the water vapour mixing ratios in the upper troposphere (20–80 ppmv) and in the lowermost stratosphere (0.02–0.3 ppmv) over the tropics. Once in the lower stratosphere, water vapour is further transported to the South Pole by the lowermost branch of Brewer-Dobson circulation. These aerosols enhance the in-atmosphere radiative forcing (0.68 ± 0.25 W m−2 to 5.30 ± 0.37 W m−2), exacerbating atmospheric warming but produce cooling effect on climate (TOA: −2.38 ± 0.12 W m−2 to −7.08 ± 0.72 W m−2). The model simulations also show that Asian carbonaceous aerosols are transported to the Arctic in the troposphere. The maximum enhancement in aerosol extinction is seen at 400 hPa (by 0.0093 km−1) and associated heating rates at 300 hPa (by 0.032 K day−1) at the Arctic.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


Sign in / Sign up

Export Citation Format

Share Document