scholarly journals The outflow of Asian biomass burning carbonaceous aerosol into the UTLS in spring: Radiative effects seen in a global model

2021 ◽  
Author(s):  
Prashant Chavan ◽  
Suvarna Fadnavis ◽  
Tanusri Chakroborty ◽  
Christopher E. Sioris ◽  
Sabine G. Griessbach ◽  
...  

Abstract. Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. From ECHAM6-HAMMOZ model simulations and satellite observations, we show that there is an outflow of Asian BB carbonaceous aerosols into the Upper Troposphere and Lower Stratosphere (UTLS) (black carbon: 0.1 to 4 ng m−3 and organic carbon: 0.6 to 9 ng m−3) during the spring season. The model simulations show that the greatest transport of BB carbonaceous aerosols into the UTLS occurs from the Indochina and East Asia region by deep convection over the maritime continent that extends to the Bay of Bengal and the South China Sea. The increase in BB carbonaceous aerosols enhances atmospheric heating by 0.002 to 0.02 K day−1 in the UTLS. The aerosol-induced heating and circulation changes increase the water vapour mixing ratios in the upper troposphere (20–80 ppmv) and in the lowermost stratosphere (0.02–0.3 ppmv) over the tropics. Once in the lower stratosphere, water vapour is further transported to the South Pole by the lowermost branch of Brewer-Dobson circulation. These aerosols enhance the in-atmosphere radiative forcing (0.68 ± 0.25 W m−2 to 5.30 ± 0.37 W m−2), exacerbating atmospheric warming but produce cooling effect on climate (TOA: −2.38 ± 0.12 W m−2 to −7.08 ± 0.72 W m−2). The model simulations also show that Asian carbonaceous aerosols are transported to the Arctic in the troposphere. The maximum enhancement in aerosol extinction is seen at 400 hPa (by 0.0093 km−1) and associated heating rates at 300 hPa (by 0.032 K day−1) at the Arctic.

2021 ◽  
Vol 21 (18) ◽  
pp. 14371-14384
Author(s):  
Prashant Chavan ◽  
Suvarna Fadnavis ◽  
Tanusri Chakroborty ◽  
Christopher E. Sioris ◽  
Sabine Griessbach ◽  
...  

Abstract. Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. From ECHAM6–HAMMOZ model simulations and satellite observations, we show that there is an outflow of Asian BB carbonaceous aerosols into the upper troposphere and lower stratosphere (UTLS) (black carbon: 0.1 to 6 ng m−3 and organic carbon: 0.2 to 10 ng m−3) during the spring season. The model simulations show that the greatest transport of BB carbonaceous aerosols into the UTLS occurs from the Indochina and East Asia region by deep convection over the Malay Peninsula and Indonesia. The increase in BB carbonaceous aerosols enhances atmospheric heating by 0.001 to 0.02 K d−1 in the UTLS. The aerosol-induced heating and circulation changes increase the water vapor mixing ratios in the upper troposphere (by 20–80 ppmv) and in the lowermost stratosphere (by 0.02–0.3 ppmv) over the tropics. Once in the lower stratosphere, water vapor is further transported to the South Pole by the lowermost branch of the Brewer–Dobson circulation. These aerosols enhance the in-atmosphere radiative forcing (0.68±0.25 to 5.30±0.37 W m−2), exacerbating atmospheric warming, but produce a cooling effect on climate (top of the atmosphere – TOA: -2.38±0.12 to -7.08±0.72 W m−2). The model simulations also show that Asian carbonaceous aerosols are transported to the Arctic in the troposphere. The maximum enhancement in aerosol extinction is seen at 400 hPa (by 0.0093 km−1) and associated heating rates at 300 hPa (by 0.032 K d−1) in the Arctic.


2020 ◽  
Author(s):  
Hao Ye ◽  
Michaela Hegglin ◽  
Martina Krämer ◽  
Christian Rolf ◽  
Alexandra Laeng ◽  
...  

<p>Water vapour in the upper troposphere and lower stratosphere (UTLS) has a significant impact both on the radiative and chemical properties of the atmosphere. Reliable water vapour observations are essential for the evaluation of the accuracy of UTLS water vapour from model simulations, and thereafter of the contribution to the global radiative forcing and climate change. Limb-viewing and nadir satellites provide high quality water vapour observations above the lower stratosphere and below the upper troposphere, respectively, but show large uncertainties in the tropopause region.<span>  </span>Within the ESA Water Vapour Climate Change Initiative, we have developed a new scheme to optimally estimate water vapour profiles in the UTLS and in particular across the tropopause, by merging observations from a set of limb and nadir satellites from 2010 to 2014. The new data record of vertically resolved water vapour is validated against the aircraft in-situ water vapour observations from the JULIA database and frostpoint hydrometer records from WAVAS. Furthermore, the new data record is used to evaluate the UTLS water vapour distribution and interannual variations from chemistry-climate model (CCM) simulations and the ERA-5 reanalysis.</p>


2017 ◽  
Vol 17 (18) ◽  
pp. 11637-11654 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Gayatry Kalita ◽  
K. Ravi Kumar ◽  
Blaž Gasparini ◽  
Jui-Lin Frank Li

Abstract. Recent satellite observations show efficient vertical transport of Asian pollutants from the surface to the upper-level anticyclone by deep monsoon convection. In this paper, we examine the transport of carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), into the monsoon anticyclone using of ECHAM6-HAM, a global aerosol climate model. Further, we investigate impacts of enhanced (doubled) carbonaceous aerosol emissions on the upper troposphere and lower stratosphere (UTLS), underneath monsoon circulation and precipitation from sensitivity simulations. The model simulation shows that boundary layer aerosols are transported into the monsoon anticyclone by the strong monsoon convection from the Bay of Bengal, southern slopes of the Himalayas and the South China Sea. Doubling of emissions of both BC and OC aerosols over Southeast Asia (10° S–50° N, 65–155° E) shows that lofted aerosols produce significant warming (0.6–1 K) over the Tibetan Plateau (TP) near 400–200 hPa and instability in the middle/upper troposphere. These aerosols enhance radiative heating rates (0.02–0.03 K day−1) near the tropopause. The enhanced carbonaceous aerosols alter aerosol radiative forcing (RF) at the surface by −4.74 ± 1.42 W m−2, at the top of the atmosphere (TOA) by +0.37 ± 0.26 W m−2 and in the atmosphere by +5.11 ± 0.83 W m−2 over the TP and Indo-Gangetic Plain region (15–35° N, 80–110° E). Atmospheric warming increases vertical velocities and thereby cloud ice in the upper troposphere. Aerosol induced anomalous warming over the TP facilitates the relative strengthening of the monsoon Hadley circulation and increases moisture inflow by strengthening the cross-equatorial monsoon jet. This increases precipitation amounts over India (1–4 mm day−1) and eastern China (0.2–2 mm day−1). These results are significant at the 99 % confidence level.


2017 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Gayatry Kalita ◽  
K. Ravi Kumar ◽  
Blaz Gasparini ◽  
Jui-Lin Frank Li

Abstract. Recent satellite observations show efficient vertical transport of Asian pollutants from the surface to the upper level anticyclone by deep monsoon convection. In this paper, we examine the transport of carbonaceous aerosols including Black Carbon (BC) and Organic Carbon (OC) into the monsoon anticyclone using of ECHAM6-HAM, a global aerosol climate model. Further, we investigate impacts of enhanced (doubled) carbonaceous aerosols emissions on the UTLS from sensitivity simulations. These model simulations show that boundary layer aerosols are transported into the monsoon anticyclone by the strong monsoon convection from the Bay of Bengal, southern slopes of the Himalayas and the South China Sea. Doubling of emissions of BC and OC aerosols, each, over the South East Asia (10° S–50° N; 65° E–155° E) shows that lofted aerosols produce significant warming in the mid/upper troposphere. These aerosols lead to an increase in temperature by 1 K–3 K in the mid/upper troposphere and in radiative heating rates by 0.005 K/day near the tropopause. They alter aerosol radiative forcing at the surface by −1.4 W/m2; at the Top Of the Atmosphere (TOA) by +1.2 W/m2 and in the atmosphere by 2.7 W/m2 over the Asian summer monsoon region (20° N–40° N, 60° E–120° E). Atmospheric warming increases vertical velocities and thereby cloud ice in the upper troposphere. An anomalous warming over the Tibetan Plateau (TP) facilitate the relative strengthening of the monsoon Hadley circulation and elicit enhancement in precipitation over India and north east China.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1175
Author(s):  
Momoka Yoshizue ◽  
Fumikazu Taketani ◽  
Kouji Adachi ◽  
Yoko Iwamoto ◽  
Yasunori Tohjima ◽  
...  

Carbonaceous aerosol particles emitted from biomass burning (BB) have a large impact on the global climate. In particular, tarball particles (TBs), which are spherical organic aerosol particles, account for a large proportion of aerosol particles from BB. In this study, we collected aerosol particles over the western North Pacific and analyzed them using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM-EDX) to reveal their shape and composition. We detected TBs and organic carbon particles originating from Siberian forest fires. To the best of our knowledge, this is the first case in which a large number of TBs have been found over the Pacific Ocean far from the BB source. The spherical shapes of the TBs were maintained even after long-range transport. In addition, our individual analysis of TBs showed that the size and composition of TBs differ depending on the air mass origin. The occurrence and microphysical properties of TBs are important to accurately evaluate the impact of TBs on climate. Our results imply that TBs can be transported to the Arctic and have an influence on radiative forcing over the ocean and in the Arctic.


2019 ◽  
Vol 19 (15) ◽  
pp. 9989-10008 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
Gayatry Kalita ◽  
Matthew Rowlinson ◽  
Alexandru Rap ◽  
...  

Abstract. Convective transport plays a key role in aerosol enhancement in the upper troposphere and lower stratosphere (UTLS) over the Asian monsoon region where low-level convective instability persists throughout the year. We use the state-of-the-art ECHAM6–HAMMOZ global chemistry–climate model to investigate the seasonal transport of anthropogenic Asian sulfate aerosols and their impact on the UTLS. Sensitivity simulations for SO2 emission perturbation over India (48 % increase) and China (70 % decrease) are performed based on the Ozone Monitoring Instrument (OMI) satellite-observed trend, rising over India by ∼4.8 % per year and decreasing over China by ∼7.0 % per year during 2006–2017. The enhanced Indian emissions result in an increase in aerosol optical depth (AOD) loading in the UTLS by 0.61 to 4.17 % over India. These aerosols are transported to the Arctic during all seasons by the lower branch of the Brewer–Dobson circulation enhancing AOD by 0.017 % to 4.8 %. Interestingly, a reduction in SO2 emission over China inhibits the transport of Indian sulfate aerosols to the Arctic in summer-monsoon and post-monsoon seasons due to subsidence over northern India. The region of sulfate aerosol enhancement shows significant warming in the UTLS over northern India, south China (0.2±0.15 to 0.8±0.72 K) and the Arctic (∼1±0.62 to 1.6±1.07 K). The estimated seasonal mean direct radiative forcing at the top of the atmosphere (TOA) induced by the increase in Indian SO2 emission is −0.2 to −1.5 W m−2 over northern India. The Chinese SO2 emission reduction leads to a positive radiative forcing of ∼0.6 to 6 W m−2 over China. The decrease in vertical velocity and the associated enhanced stability of the upper troposphere in response to increased Indian SO2 emissions will likely decrease rainfall over India.


2015 ◽  
Vol 15 (2) ◽  
pp. 563-582 ◽  
Author(s):  
N. Glatthor ◽  
M. Höpfner ◽  
G. P. Stiller ◽  
T. von Clarmann ◽  
B. Funke ◽  
...  

Abstract. We present a HCN climatology of the years 2002–2012, derived from FTIR limb emission spectra measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the ENVISAT satellite, with the main focus on biomass burning signatures in the upper troposphere and lower stratosphere. HCN is an almost unambiguous tracer of biomass burning with a tropospheric lifetime of 5–6 months and a stratospheric lifetime of about 2 years. The MIPAS climatology is in good agreement with the HCN distribution obtained by the spaceborne ACE-FTS experiment and with airborne in situ measurements performed during the INTEX-B campaign. The HCN amounts observed by MIPAS in the southern tropical and subtropical upper troposphere have an annual cycle peaking in October–November, i.e. 1–2 months after the maximum of southern hemispheric fire emissions. The probable reason for the time shift is the delayed onset of deep convection towards austral summer. Because of overlap of varying biomass burning emissions from South America and southern Africa with sporadically strong contributions from Indonesia, the size and strength of the southern hemispheric plume have considerable interannual variations, with monthly mean maxima at, for example, 14 km between 400 and more than 700 pptv. Within 1–2 months after appearance of the plume, a considerable portion of the enhanced HCN is transported southward to as far as Antarctic latitudes. The fundamental period of HCN variability in the northern upper troposphere is also an annual cycle with varying amplitude, which in the tropics peaks in May after and during the biomass burning seasons in northern tropical Africa and southern Asia, and in the subtropics peaks in July due to trapping of pollutants in the Asian monsoon anticyclone (AMA). However, caused by extensive biomass burning in Indonesia and by northward transport of part of the southern hemispheric plume, northern HCN maxima also occur around October/November in several years, which leads to semi-annual cycles. There is also a temporal shift between enhanced HCN in northern low and mid- to high latitudes, indicating northward transport of pollutants. Due to additional biomass burning at mid- and high latitudes, this meridional transport pattern is not as clear as in the Southern Hemisphere. Upper tropospheric HCN volume mixing ratios (VMRs) above the tropical oceans decrease to below 200 pptv, presumably caused by ocean uptake, especially during boreal winter and spring. The tropical stratospheric tape recorder signal with an apparently biennial period, which was detected in MLS and ACE-FTS data from mid-2004 to mid-2007, is corroborated by MIPAS HCN data. The tape recorder signal in the whole MIPAS data set exhibits periodicities of 2 and 4 years, which are generated by interannual variations in biomass burning. The positive anomalies of the years 2003, 2007 and 2011 are caused by succession of strongly enhanced HCN from southern hemispheric and Indonesian biomass burning in boreal autumn and of elevated HCN from northern tropical Africa and the AMA in subsequent spring and summer. The anomaly of 2005 seems to be due to springtime emissions from tropical Africa followed by release from the summertime AMA. The vertical transport time of the anomalies is 1 month or less between 14 and 17 km in the upper troposphere and 8–11 months between 17 and 25 km in the lower stratosphere.


2015 ◽  
Vol 15 (16) ◽  
pp. 22291-22329 ◽  
Author(s):  
C. E. Sioris ◽  
J. Zou ◽  
D. A. Plummer ◽  
C. D. Boone ◽  
C. T. McElroy ◽  
...  

Abstract. Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60–90 and 60–90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in eight of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = −0.80) of the monthly variability in water vapour at northern high-latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March 2004–2013). Using a seasonal timestep and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950–2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km.


2021 ◽  
Author(s):  
Meike Rotermund ◽  
Vera Bense ◽  
Martyn Chipperfield ◽  
Andreas Engel ◽  
Jens-Uwe Grooß ◽  
...  

<p>We report on measurements of total bromine (Br<sup>tot</sup>) in the upper troposphere and lower stratosphere (UTLS) taken from the German High Altitude and LOng range research aircraft (HALO) over the North Atlantic, Norwegian Sea and north-western Europe in September/ October 2017 during the WISE (Wave-driven ISentropic Exchange) research campaign. Br<sup>tot</sup> is calculated from measured total organic bromine (Br<sup>org</sup>) (i.e., the sum of bromine contained in CH<sub>3</sub>Br, the halons and the major very short-lived brominated substances) added to inorganic bromine (Br<sub>y</sub><sup>inorg</sup>), evaluated from measured BrO and photochemical modelling. Combining these data, the weighted mean [Br<sup>tot</sup>] is 19.2 ± 1.2 ppt in the extratropical lower stratosphere (Ex-LS) of the northern hemisphere. The inferred average Br<sup>tot</sup> for the Ex-LS is slightly smaller than expected for the middle stratosphere in 2016 (~19.6 ppt (ranging from 19-20 ppt) as reported by the WMO/UNEP Assessment (2018)). However, it reflects the expected variability in Br<sup>tot</sup> in the Ex-LS due to influxes of shorter lived brominated source and product gases from different regions of entry. A closer look into Br<sup>org</sup> and Br<sub>y</sub><sup>inorg</sup> as well as simultaneously measured transport tracers (CO, N<sub>2</sub>O, ...) and an air mass lag-time tracer (SF<sub>6</sub>), suggests that a filament of air with elevated Br<sup>tot</sup> protruded into the extratropical lowermost stratosphere (Ex-LMS) from 350-385 K and between equivalent latitudes of 55-80˚N (high bromine filament – HBrF). Lagrangian transport modelling shows the multi-pathway contributions to Ex-LMS bromine. According to CLaMS air mass origin simulations, contributions to the HBrF consist of predominantly isentropic transport from the tropical troposphere (also with elevated [Br<sup>tot</sup>] = 21.6 ± 0.7 ppt) as well as a smaller contribution from an exchange across the extratropical tropopause which are mixed into the stratospheric background air. In contrast, the surrounding LS above and below the HBrF has less tropical tropospheric air, but instead additional stratospheric background air. Of the tropical tropospheric air in the HBrF, the majority is from the outflow of the Asian monsoon anticyclone and the adjacent tropical regions, which greatly influences concentrations of trace gases transported into the Ex-LMS in boreal summer and fall. The resulting increase of Br<sup>tot</sup> in the Ex-LMS and its consequences for ozone is investigated through the TOMCAT/SLIMCAT model simulations. However, more extensive monitoring of total stratospheric bromine in more aged air (i.e., in the middle stratosphere) as well as globally and seasonally is required in addition to model simulations to fully understand its impact on Ex-LMS ozone and the radiative forcing of climate.</p>


2016 ◽  
Vol 9 (9) ◽  
pp. 4355-4373 ◽  
Author(s):  
Swagata Payra ◽  
Philippe Ricaud ◽  
Rachid Abida ◽  
Laaziz El Amraoui ◽  
Jean-Luc Attié ◽  
...  

Abstract. The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project “Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics” (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316–5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the vertical resolution of the MIPAS data set at 121 and 100 hPa prevent assessment of the behaviour of the analyses at 121 and 100 hPa, particularly over intense convective areas as the South American, the African and the Maritime continents but, in the lower stratosphere (68 hPa), the analyses are very consistent with MIPAS. Sensitivity studies show the improvement on the H2O analyses in the tropical UTLS when assimilating space-borne measurements of better quality, particularly over the convective areas.


Sign in / Sign up

Export Citation Format

Share Document