scholarly journals The outflow of Asian biomass burning carbonaceous aerosol into the upper troposphere and lower stratosphere in spring: radiative effects seen in a global model

2021 ◽  
Vol 21 (18) ◽  
pp. 14371-14384
Author(s):  
Prashant Chavan ◽  
Suvarna Fadnavis ◽  
Tanusri Chakroborty ◽  
Christopher E. Sioris ◽  
Sabine Griessbach ◽  
...  

Abstract. Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. From ECHAM6–HAMMOZ model simulations and satellite observations, we show that there is an outflow of Asian BB carbonaceous aerosols into the upper troposphere and lower stratosphere (UTLS) (black carbon: 0.1 to 6 ng m−3 and organic carbon: 0.2 to 10 ng m−3) during the spring season. The model simulations show that the greatest transport of BB carbonaceous aerosols into the UTLS occurs from the Indochina and East Asia region by deep convection over the Malay Peninsula and Indonesia. The increase in BB carbonaceous aerosols enhances atmospheric heating by 0.001 to 0.02 K d−1 in the UTLS. The aerosol-induced heating and circulation changes increase the water vapor mixing ratios in the upper troposphere (by 20–80 ppmv) and in the lowermost stratosphere (by 0.02–0.3 ppmv) over the tropics. Once in the lower stratosphere, water vapor is further transported to the South Pole by the lowermost branch of the Brewer–Dobson circulation. These aerosols enhance the in-atmosphere radiative forcing (0.68±0.25 to 5.30±0.37 W m−2), exacerbating atmospheric warming, but produce a cooling effect on climate (top of the atmosphere – TOA: -2.38±0.12 to -7.08±0.72 W m−2). The model simulations also show that Asian carbonaceous aerosols are transported to the Arctic in the troposphere. The maximum enhancement in aerosol extinction is seen at 400 hPa (by 0.0093 km−1) and associated heating rates at 300 hPa (by 0.032 K d−1) in the Arctic.

2021 ◽  
Author(s):  
Prashant Chavan ◽  
Suvarna Fadnavis ◽  
Tanusri Chakroborty ◽  
Christopher E. Sioris ◽  
Sabine G. Griessbach ◽  
...  

Abstract. Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. From ECHAM6-HAMMOZ model simulations and satellite observations, we show that there is an outflow of Asian BB carbonaceous aerosols into the Upper Troposphere and Lower Stratosphere (UTLS) (black carbon: 0.1 to 4 ng m−3 and organic carbon: 0.6 to 9 ng m−3) during the spring season. The model simulations show that the greatest transport of BB carbonaceous aerosols into the UTLS occurs from the Indochina and East Asia region by deep convection over the maritime continent that extends to the Bay of Bengal and the South China Sea. The increase in BB carbonaceous aerosols enhances atmospheric heating by 0.002 to 0.02 K day−1 in the UTLS. The aerosol-induced heating and circulation changes increase the water vapour mixing ratios in the upper troposphere (20–80 ppmv) and in the lowermost stratosphere (0.02–0.3 ppmv) over the tropics. Once in the lower stratosphere, water vapour is further transported to the South Pole by the lowermost branch of Brewer-Dobson circulation. These aerosols enhance the in-atmosphere radiative forcing (0.68 ± 0.25 W m−2 to 5.30 ± 0.37 W m−2), exacerbating atmospheric warming but produce cooling effect on climate (TOA: −2.38 ± 0.12 W m−2 to −7.08 ± 0.72 W m−2). The model simulations also show that Asian carbonaceous aerosols are transported to the Arctic in the troposphere. The maximum enhancement in aerosol extinction is seen at 400 hPa (by 0.0093 km−1) and associated heating rates at 300 hPa (by 0.032 K day−1) at the Arctic.


2017 ◽  
Vol 17 (18) ◽  
pp. 11637-11654 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Gayatry Kalita ◽  
K. Ravi Kumar ◽  
Blaž Gasparini ◽  
Jui-Lin Frank Li

Abstract. Recent satellite observations show efficient vertical transport of Asian pollutants from the surface to the upper-level anticyclone by deep monsoon convection. In this paper, we examine the transport of carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), into the monsoon anticyclone using of ECHAM6-HAM, a global aerosol climate model. Further, we investigate impacts of enhanced (doubled) carbonaceous aerosol emissions on the upper troposphere and lower stratosphere (UTLS), underneath monsoon circulation and precipitation from sensitivity simulations. The model simulation shows that boundary layer aerosols are transported into the monsoon anticyclone by the strong monsoon convection from the Bay of Bengal, southern slopes of the Himalayas and the South China Sea. Doubling of emissions of both BC and OC aerosols over Southeast Asia (10° S–50° N, 65–155° E) shows that lofted aerosols produce significant warming (0.6–1 K) over the Tibetan Plateau (TP) near 400–200 hPa and instability in the middle/upper troposphere. These aerosols enhance radiative heating rates (0.02–0.03 K day−1) near the tropopause. The enhanced carbonaceous aerosols alter aerosol radiative forcing (RF) at the surface by −4.74 ± 1.42 W m−2, at the top of the atmosphere (TOA) by +0.37 ± 0.26 W m−2 and in the atmosphere by +5.11 ± 0.83 W m−2 over the TP and Indo-Gangetic Plain region (15–35° N, 80–110° E). Atmospheric warming increases vertical velocities and thereby cloud ice in the upper troposphere. Aerosol induced anomalous warming over the TP facilitates the relative strengthening of the monsoon Hadley circulation and increases moisture inflow by strengthening the cross-equatorial monsoon jet. This increases precipitation amounts over India (1–4 mm day−1) and eastern China (0.2–2 mm day−1). These results are significant at the 99 % confidence level.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1175
Author(s):  
Momoka Yoshizue ◽  
Fumikazu Taketani ◽  
Kouji Adachi ◽  
Yoko Iwamoto ◽  
Yasunori Tohjima ◽  
...  

Carbonaceous aerosol particles emitted from biomass burning (BB) have a large impact on the global climate. In particular, tarball particles (TBs), which are spherical organic aerosol particles, account for a large proportion of aerosol particles from BB. In this study, we collected aerosol particles over the western North Pacific and analyzed them using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM-EDX) to reveal their shape and composition. We detected TBs and organic carbon particles originating from Siberian forest fires. To the best of our knowledge, this is the first case in which a large number of TBs have been found over the Pacific Ocean far from the BB source. The spherical shapes of the TBs were maintained even after long-range transport. In addition, our individual analysis of TBs showed that the size and composition of TBs differ depending on the air mass origin. The occurrence and microphysical properties of TBs are important to accurately evaluate the impact of TBs on climate. Our results imply that TBs can be transported to the Arctic and have an influence on radiative forcing over the ocean and in the Arctic.


2019 ◽  
Vol 19 (15) ◽  
pp. 9989-10008 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
Gayatry Kalita ◽  
Matthew Rowlinson ◽  
Alexandru Rap ◽  
...  

Abstract. Convective transport plays a key role in aerosol enhancement in the upper troposphere and lower stratosphere (UTLS) over the Asian monsoon region where low-level convective instability persists throughout the year. We use the state-of-the-art ECHAM6–HAMMOZ global chemistry–climate model to investigate the seasonal transport of anthropogenic Asian sulfate aerosols and their impact on the UTLS. Sensitivity simulations for SO2 emission perturbation over India (48 % increase) and China (70 % decrease) are performed based on the Ozone Monitoring Instrument (OMI) satellite-observed trend, rising over India by ∼4.8 % per year and decreasing over China by ∼7.0 % per year during 2006–2017. The enhanced Indian emissions result in an increase in aerosol optical depth (AOD) loading in the UTLS by 0.61 to 4.17 % over India. These aerosols are transported to the Arctic during all seasons by the lower branch of the Brewer–Dobson circulation enhancing AOD by 0.017 % to 4.8 %. Interestingly, a reduction in SO2 emission over China inhibits the transport of Indian sulfate aerosols to the Arctic in summer-monsoon and post-monsoon seasons due to subsidence over northern India. The region of sulfate aerosol enhancement shows significant warming in the UTLS over northern India, south China (0.2±0.15 to 0.8±0.72 K) and the Arctic (∼1±0.62 to 1.6±1.07 K). The estimated seasonal mean direct radiative forcing at the top of the atmosphere (TOA) induced by the increase in Indian SO2 emission is −0.2 to −1.5 W m−2 over northern India. The Chinese SO2 emission reduction leads to a positive radiative forcing of ∼0.6 to 6 W m−2 over China. The decrease in vertical velocity and the associated enhanced stability of the upper troposphere in response to increased Indian SO2 emissions will likely decrease rainfall over India.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Chunhua Shi ◽  
Wenyi Cai ◽  
Dong Guo

We describe here the composition and thermal structure of the upper troposphere and lower stratosphere during a penetrating mesoscale convective complex (MCC) event that occurred in southern China on 8 June 2009. Our results are based on satellite observations and Weather Research and Forecasting model simulations. Ice-rich and ozone-poor air reached as high as 17 km. The air was −5°C colder inside the mature MCC than outside at the first cold-point tropopause near 17 km, −2°C colder inside the mature MCC than outside at the second cold-point tropopause, and 3°C warmer inside the mature MCC than outside between the two cold-point tropopauses. Corresponding to the temperature structure, there were two lower water vapor contents inside the MCC than outside near 17 km and 19 km while there was a higher water vapor content inside the MCC than outside near 18 km.


2016 ◽  
Author(s):  
M. Venkat Ratnam ◽  
S. Ravindra Babu ◽  
S. S. Das ◽  
Ghouse Basha ◽  
B. V. Krishnamurthy ◽  
...  

Abstract. Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere-troposphere exchange (STE) process in the Upper Troposphere and Lower Stratosphere (UTLS) region. In the present study, the impact of cyclones that occurred over the North Indian Ocean during 2007–2013 on the STE process is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS) Radio Occultation (RO) measurements and ozone and water vapor concentrations in UTLS region are obtained from Aura-Microwave Limb Sounder (MLS) satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km from the centre of cyclone. In our earlier study we have observed decrease (increase) in the tropopause altitude (temperature) up to 0.6 km (3 K) and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL) thickness of 3 km within the 500 km from the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from cyclone centre whereas the enhancement in the water vapor in the lower stratosphere is more significant on south-east side extending from 500–1000 km away from the cyclone centre. We estimated the cross-tropopause mass flux for different intensities of cyclones and found that the mean flux from stratosphere to troposphere for cyclonic stroms is 0.05 ± 0.29 × 10−3 kg m−2 and for very severe cyclonic stroms it is 0.5 ± 1.07 × 10−3 kg m−2. More downward flux is noticed in the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget and consequentially the STE in the UTLS region.


2015 ◽  
Vol 15 (2) ◽  
pp. 563-582 ◽  
Author(s):  
N. Glatthor ◽  
M. Höpfner ◽  
G. P. Stiller ◽  
T. von Clarmann ◽  
B. Funke ◽  
...  

Abstract. We present a HCN climatology of the years 2002–2012, derived from FTIR limb emission spectra measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the ENVISAT satellite, with the main focus on biomass burning signatures in the upper troposphere and lower stratosphere. HCN is an almost unambiguous tracer of biomass burning with a tropospheric lifetime of 5–6 months and a stratospheric lifetime of about 2 years. The MIPAS climatology is in good agreement with the HCN distribution obtained by the spaceborne ACE-FTS experiment and with airborne in situ measurements performed during the INTEX-B campaign. The HCN amounts observed by MIPAS in the southern tropical and subtropical upper troposphere have an annual cycle peaking in October–November, i.e. 1–2 months after the maximum of southern hemispheric fire emissions. The probable reason for the time shift is the delayed onset of deep convection towards austral summer. Because of overlap of varying biomass burning emissions from South America and southern Africa with sporadically strong contributions from Indonesia, the size and strength of the southern hemispheric plume have considerable interannual variations, with monthly mean maxima at, for example, 14 km between 400 and more than 700 pptv. Within 1–2 months after appearance of the plume, a considerable portion of the enhanced HCN is transported southward to as far as Antarctic latitudes. The fundamental period of HCN variability in the northern upper troposphere is also an annual cycle with varying amplitude, which in the tropics peaks in May after and during the biomass burning seasons in northern tropical Africa and southern Asia, and in the subtropics peaks in July due to trapping of pollutants in the Asian monsoon anticyclone (AMA). However, caused by extensive biomass burning in Indonesia and by northward transport of part of the southern hemispheric plume, northern HCN maxima also occur around October/November in several years, which leads to semi-annual cycles. There is also a temporal shift between enhanced HCN in northern low and mid- to high latitudes, indicating northward transport of pollutants. Due to additional biomass burning at mid- and high latitudes, this meridional transport pattern is not as clear as in the Southern Hemisphere. Upper tropospheric HCN volume mixing ratios (VMRs) above the tropical oceans decrease to below 200 pptv, presumably caused by ocean uptake, especially during boreal winter and spring. The tropical stratospheric tape recorder signal with an apparently biennial period, which was detected in MLS and ACE-FTS data from mid-2004 to mid-2007, is corroborated by MIPAS HCN data. The tape recorder signal in the whole MIPAS data set exhibits periodicities of 2 and 4 years, which are generated by interannual variations in biomass burning. The positive anomalies of the years 2003, 2007 and 2011 are caused by succession of strongly enhanced HCN from southern hemispheric and Indonesian biomass burning in boreal autumn and of elevated HCN from northern tropical Africa and the AMA in subsequent spring and summer. The anomaly of 2005 seems to be due to springtime emissions from tropical Africa followed by release from the summertime AMA. The vertical transport time of the anomalies is 1 month or less between 14 and 17 km in the upper troposphere and 8–11 months between 17 and 25 km in the lower stratosphere.


2021 ◽  
Author(s):  
Meike Rotermund ◽  
Vera Bense ◽  
Martyn Chipperfield ◽  
Andreas Engel ◽  
Jens-Uwe Grooß ◽  
...  

<p>We report on measurements of total bromine (Br<sup>tot</sup>) in the upper troposphere and lower stratosphere (UTLS) taken from the German High Altitude and LOng range research aircraft (HALO) over the North Atlantic, Norwegian Sea and north-western Europe in September/ October 2017 during the WISE (Wave-driven ISentropic Exchange) research campaign. Br<sup>tot</sup> is calculated from measured total organic bromine (Br<sup>org</sup>) (i.e., the sum of bromine contained in CH<sub>3</sub>Br, the halons and the major very short-lived brominated substances) added to inorganic bromine (Br<sub>y</sub><sup>inorg</sup>), evaluated from measured BrO and photochemical modelling. Combining these data, the weighted mean [Br<sup>tot</sup>] is 19.2 ± 1.2 ppt in the extratropical lower stratosphere (Ex-LS) of the northern hemisphere. The inferred average Br<sup>tot</sup> for the Ex-LS is slightly smaller than expected for the middle stratosphere in 2016 (~19.6 ppt (ranging from 19-20 ppt) as reported by the WMO/UNEP Assessment (2018)). However, it reflects the expected variability in Br<sup>tot</sup> in the Ex-LS due to influxes of shorter lived brominated source and product gases from different regions of entry. A closer look into Br<sup>org</sup> and Br<sub>y</sub><sup>inorg</sup> as well as simultaneously measured transport tracers (CO, N<sub>2</sub>O, ...) and an air mass lag-time tracer (SF<sub>6</sub>), suggests that a filament of air with elevated Br<sup>tot</sup> protruded into the extratropical lowermost stratosphere (Ex-LMS) from 350-385 K and between equivalent latitudes of 55-80˚N (high bromine filament – HBrF). Lagrangian transport modelling shows the multi-pathway contributions to Ex-LMS bromine. According to CLaMS air mass origin simulations, contributions to the HBrF consist of predominantly isentropic transport from the tropical troposphere (also with elevated [Br<sup>tot</sup>] = 21.6 ± 0.7 ppt) as well as a smaller contribution from an exchange across the extratropical tropopause which are mixed into the stratospheric background air. In contrast, the surrounding LS above and below the HBrF has less tropical tropospheric air, but instead additional stratospheric background air. Of the tropical tropospheric air in the HBrF, the majority is from the outflow of the Asian monsoon anticyclone and the adjacent tropical regions, which greatly influences concentrations of trace gases transported into the Ex-LMS in boreal summer and fall. The resulting increase of Br<sup>tot</sup> in the Ex-LMS and its consequences for ozone is investigated through the TOMCAT/SLIMCAT model simulations. However, more extensive monitoring of total stratospheric bromine in more aged air (i.e., in the middle stratosphere) as well as globally and seasonally is required in addition to model simulations to fully understand its impact on Ex-LMS ozone and the radiative forcing of climate.</p>


2019 ◽  
Vol 19 (6) ◽  
pp. 3589-3620 ◽  
Author(s):  
Ryan S. Williams ◽  
Michaela I. Hegglin ◽  
Brian J. Kerridge ◽  
Patrick Jöckel ◽  
Barry G. Latter ◽  
...  

Abstract. The stratospheric contribution to tropospheric ozone (O3) has been a subject of much debate in recent decades but is known to have an important influence. Recent improvements in diagnostic and modelling tools provide new evidence that the stratosphere has a much larger influence than previously thought. This study aims to characterise the seasonal and geographical distribution of tropospheric ozone, its variability, and its changes and provide quantification of the stratospheric influence on these measures. To this end, we evaluate hindcast specified-dynamics chemistry–climate model (CCM) simulations from the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model and the Canadian Middle Atmosphere Model (CMAM), as contributed to the International Global Atmospheric Chemistry – Stratosphere-troposphere Processes And their Role in Climate (IGAC-SPARC) (IGAC–SPARC) Chemistry Climate Model Initiative (CCMI) activity, together with satellite observations from the Ozone Monitoring Instrument (OMI) and ozone-sonde profile measurements from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) over a period of concurrent data availability (2005–2010). An overall positive, seasonally dependent bias in 1000–450 hPa (∼0–5.5 km) sub-column ozone is found for EMAC, ranging from 2 to 8 Dobson units (DU), whereas CMAM is found to be in closer agreement with the observations, although with substantial seasonal and regional variation in the sign and magnitude of the bias (∼±4 DU). Although the application of OMI averaging kernels (AKs) improves agreement with model estimates from both EMAC and CMAM as expected, comparisons with ozone-sondes indicate a positive ozone bias in the lower stratosphere in CMAM, together with a negative bias in the troposphere resulting from a likely underestimation of photochemical ozone production. This has ramifications for diagnosing the level of model–measurement agreement. Model variability is found to be more similar in magnitude to that implied from ozone-sondes in comparison with OMI, which has significantly larger variability. Noting the overall consistency of the CCMs, the influence of the model chemistry schemes and internal dynamics is discussed in relation to the inter-model differences found. In particular, it is inferred that CMAM simulates a faster and shallower Brewer–Dobson circulation (BDC) compared to both EMAC and observational estimates, which has implications for the distribution and magnitude of the downward flux of stratospheric ozone over the most recent climatological period (1980–2010). Nonetheless, it is shown that the stratospheric influence on tropospheric ozone is significant and is estimated to exceed 50 % in the wintertime extratropics, even in the lower troposphere. Finally, long-term changes in the CCM ozone tracers are calculated for different seasons. An overall statistically significant increase in tropospheric ozone is found across much of the world but particularly in the Northern Hemisphere and in the middle to upper troposphere, where the increase is on the order of 4–6 ppbv (5 %–10 %) between 1980–1989 and 2001–2010. Our model study implies that attribution from stratosphere–troposphere exchange (STE) to such ozone changes ranges from 25 % to 30 % at the surface to as much as 50 %–80 % in the upper troposphere–lower stratosphere (UTLS) across some regions of the world, including western Eurasia, eastern North America, the South Pacific and the southern Indian Ocean. These findings highlight the importance of a well-resolved stratosphere in simulations of tropospheric ozone and its implications for the radiative forcing, air quality and oxidation capacity of the troposphere.


Sign in / Sign up

Export Citation Format

Share Document