scholarly journals Climatological impact of the Brewer–Dobson Circulation on the N<sub>2</sub>O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses

2020 ◽  
Author(s):  
Daniele Minganti ◽  
Simon Chabrillat ◽  
Yves Christophe ◽  
Quentin Errera ◽  
Marta Abalos ◽  
...  

Abstract. The Brewer–Dobson Circulation (BDC) transports chemical tracers from the well-mixed tropical troposphere to the polar stratosphere, with many important implications for climate, chemistry, ozone distribution and recovery. Since the photochemical losses of nitrous oxide (N2O) are well-known, model differences in its rate of change are due to transport processes that can be separated in the mean residual advection and the isentropic mixing terms in the Transformed Eulerian Mean (TEM) framework. Here the climatological impact of the stratospheric BDC on the long-lived tracer N2O is evaluated through a comparison of its TEM budget in the Whole Atmosphere Community Climate Model (WACCM), a chemical reanalysis of the Aura Microwave Limb Sounder version 2 (BRAM2) and in a Chemistry-Transport Model (CTM) driven by four modern reanalyses (ERA-Interim, JRA-55, MERRA and MERRA2). The effects of stratospheric transport on the N2O rate of change, as depicted in this study, have not been compared across this variety of datasets and never investigated in a chemical reanalysis. We focus on the seasonal means and climatological annual cycles of the two main contributions to the N2O TEM budget: the vertical residual advection and the horizontal mixing terms. The N2O mixing ratio in the CTM experiments has a spread of approximately ~ 20 % in the middle stratosphere, reflecting the large diversity in the mean Age of Air obtained with the same experiments. In all datasets the TEM budget is well-closed and the agreement between the vertical advection terms is qualitatively very good in the Northern Hemisphere, and good in the Southern Hemisphere except above the Antarctic region. The datasets do not agree as well with respect to the horizontal mixing term, especially in the Northern Hemisphere where horizontal mixing has a smaller contribution in WACCM than in the reanalyses. WACCM is investigated through three model realizations and a sensitivity test where gravity waves are forced differently in the Southern Hemisphere. The internal variability of the horizontal mixing in WACCM is large in the polar regions, and comparable to the differences between the dynamical reanalyses. The sensitivity test has a relatively small impact on the horizontal mixing term, but significantly changes the vertical advection term and produces a less realistic N2O annual cycle above the Antarctic. In this region, all reanalyses show a large wintertime N2O decrease, which is mainly due to horizontal mixing. This is not seen with WACCM, where the horizontal mixing term barely contributes to the TEM budget. While we must use caution in the interpretation of the differences in this region, where the reanalyses show large residuals of the TEM budget, they could be due to the fact that the polar jet is stronger and not tilted equatorward in WACCM compared with the reanalyses. We also compare the inter-annual variability in the horizontal mixing and the vertical advection terms. As expected, the horizontal mixing term presents a large variability during austral fall and boreal winter in the polar regions. In the Tropics, the inter-annual variability of the vertical advection term is much smaller in WACCM and JRA-55 than in the other experiments. The large residual in the reanalyses and the disagreement between WACCM and the reanalyses in the Antarctic region highlight the need for further investigations on the modeling of transport in this region of the stratosphere.

2020 ◽  
Vol 20 (21) ◽  
pp. 12609-12631
Author(s):  
Daniele Minganti ◽  
Simon Chabrillat ◽  
Yves Christophe ◽  
Quentin Errera ◽  
Marta Abalos ◽  
...  

Abstract. The Brewer–Dobson circulation (BDC) is a stratospheric circulation characterized by upwelling of tropospheric air in the tropics, poleward flow in the stratosphere, and downwelling at mid and high latitudes, with important implications for chemical tracer distributions, stratospheric heat and momentum budgets, and mass exchange with the troposphere. As the photochemical losses of nitrous oxide (N2O) are well known, model differences in its rate of change are due to transport processes that can be separated into the mean residual advection and the isentropic mixing terms in the transformed Eulerian mean (TEM) framework. Here, the climatological impact of the stratospheric BDC on the long-lived tracer N2O is evaluated through a comparison of its TEM budget in the Whole Atmosphere Community Climate Model (WACCM), in a chemical reanalysis of the Aura Microwave Limb Sounder version 2 (BRAM2) and in a chemistry transport model (CTM) driven by four modern reanalyses: the European Centre for Medium-Range Weather Forecasts Interim reanalysis (ERA-Interim; Dee et al., 2011), the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al., 2015), and the Modern-Era Retrospective analysis for Research and Applications version 1 (MERRA; Rienecker et al., 2011) and version 2 (MERRA-2; Gelaro et al., 2017). The effects of stratospheric transport on the N2O rate of change, as depicted in this study, have not been compared before across this variety of datasets and have never been investigated in a modern chemical reanalysis. We focus on the seasonal means and climatological annual cycles of the two main contributions to the N2O TEM budget: the vertical residual advection and the horizontal mixing terms. The N2O mixing ratio in the CTM experiments has a spread of approximately ∼20 % in the middle stratosphere, reflecting the large diversity in the mean age of air obtained with the same CTM experiments in a previous study. In all datasets, the TEM budget is closed well; the agreement between the vertical advection terms is qualitatively very good in the Northern Hemisphere, and it is good in the Southern Hemisphere except above the Antarctic region. The datasets do not agree as well with respect to the horizontal mixing term, especially in the Northern Hemisphere where horizontal mixing has a smaller contribution in WACCM than in the reanalyses. WACCM is investigated through three model realizations and a sensitivity test using the previous version of the gravity wave parameterization. The internal variability of the horizontal mixing in WACCM is large in the polar regions and is comparable to the differences between the dynamical reanalyses. The sensitivity test has a relatively small impact on the horizontal mixing term, but it significantly changes the vertical advection term and produces a less realistic N2O annual cycle above the Antarctic. In this region, all reanalyses show a large wintertime N2O decrease, which is mainly due to horizontal mixing. This is not seen with WACCM, where the horizontal mixing term barely contributes to the TEM budget. While we must use caution in the interpretation of the differences in this region (where the reanalyses show large residuals of the TEM budget), they could be due to the fact that the polar jet is stronger and is not tilted equatorward in WACCM compared with the reanalyses. We also compare the interannual variability in the horizontal mixing and the vertical advection terms between the different datasets. As expected, the horizontal mixing term presents a large variability during austral fall and boreal winter in the polar regions. In the tropics, the interannual variability of the vertical advection term is much smaller in WACCM and JRA-55 than in the other experiments. The large residual in the reanalyses and the disagreement between WACCM and the reanalyses in the Antarctic region highlight the need for further investigations on the modeling of transport in this region of the stratosphere.


2020 ◽  
Author(s):  
Daniele Minganti ◽  
Simon Chabrillat ◽  
Yves Christophe ◽  
Quentin Errrera ◽  
Marta Abalos ◽  
...  

&lt;p&gt;The Brewer-Dobson Circulation (BDC) plays a major role in the stratospheric dynamics in terms of tracer transport through the mean residual meridional advection and the isentropic 2-way mixing. &lt;br&gt;The climatological BDC in the Whole Atmosphere Community Climate Model (WACCM) is separated in its components and evaluated through a comparison with a chemical reanalysis of the Aura Microwave Limb Sounder version 2 (BRAM2) and with a chemistry-transport model driven by four modern reanalyses (ERA-Interim, JRA-55, MERRA and MERRA2). The BDC seasonal means and climatological annual cycle are addressed using the Transformed Eulerian Mean (TEM) analysis of the long-lived tracer N2O. The N2O TEM budget terms considered in this study are the vertical residual advection and the horizontal two-way mixing terms.&lt;br&gt;WACCM presents a general underestimation of the horizontal mixing term in the wintertime Northern Hemisphere with respect to the reanalyses throughout the stratosphere.In the wintertime antarctic region the mid-low stratospheric horizontal mixing term in WACCM does not agree with the reanalyses: it shows near-zero positive values, while all the reanalyses show a consistent negative contribution. This disagreement between WACCM and the reanalyses is located in the region and period of the polar vortex development, and can be related to a different representation of the polar jet. In this region the reanalyses are nevertheless affected by large uncertanties of the TEM analysis: the residual term of the budget has the same magnitude as the horizontal mixing term.Even though the residual term can be interpreted as the effect of sub-grid mixing processes, caution must be exerted when considering these regions because the N2O TEM budget is not completetely closed.&lt;br&gt;The mid-stratospheric arctic region are characterized by smaller uncertanties of the TEM budget together with large differences among the datasets during winter: the WACCM realizations, characterized by a large internal variability, show a smaller horizontal mixing contribution with respect to the reanalyses. &lt;br&gt;The agreement among datasets is generally improved when considering the middle and low latitudes, especially in the Northern Hemisphere: those regions are characterized by smaller differences among datasets and a well-closed TEM budget.&lt;br&gt;The inter-annual variability of the horizontal mixing term and the vertical advection term is highly latitude-dependent: the horizontal mixing term presents a large variability, together with a large dataset spread, in the antarctic region in the austral fall and during boreal winter in the Arctic; the vertical advection shows large variability in the arctic region and large model spread in the Tropical regions.&lt;/p&gt;


2019 ◽  
Vol 32 (13) ◽  
pp. 3941-3956 ◽  
Author(s):  
Rune G. Graversen ◽  
Peter L. Langen

AbstractA doubling of the atmospheric CO2 content leads to global warming that is amplified in the polar regions. The CO2 forcing also leads to a change of the atmospheric energy transport. This transport change affects the local warming induced by the CO2 forcing. Using the Community Earth System Model (CESM), the direct response to the transport change is investigated. Divergences of the transport change associated with a CO2 doubling are implemented as a forcing in the 1 × CO2 preindustrial control climate. This forcing is zero in the global mean. In response to a CO2 increase in CESM, the northward atmospheric energy transport decreases at the Arctic boundary. However, the transport change still leads to a warming of the Arctic. This is due to a shift between dry static and latent transport components, so that although the dry static transport decreases, the latent transport increases at the Arctic boundary, which is consistent with other model studies. Because of a greenhouse effect associated with the latent transport, the cooling caused by a change of the dry static component is more than compensated for by the warming induced by the change of the latent transport. Similar results are found for the Antarctic region, but the transport change is larger in the Southern Hemisphere than in its northern counterpart. As a consequence, the Antarctic region warms to the extent that this warming leads to global warming that is likely enhanced by the surface albedo feedback associated with considerable ice retreat in the Southern Hemisphere.


2017 ◽  
Vol 103 (1) ◽  
pp. 119-135 ◽  
Author(s):  
Kornylii Tretyak ◽  
Al-Alusi Forat ◽  
Yurii Holubinka

Abstract The paper describes a modified algorithm of determination of the Euler pole coordinates and angular velocity of the tectonic plate, considering the continuous and uneven distribution of daily measurements of GNSS permanent stations. Using developed algorithm were determined the mean position of Euler pole and angular velocity of Antarctic tectonic plate and their annual changes. As the input data, we used the results of observations, collected on 28 permanent stations of the Antarctic region, within the period from 1996 to 2014.


Radiocarbon ◽  
2020 ◽  
Vol 62 (4) ◽  
pp. 759-778 ◽  
Author(s):  
Alan G Hogg ◽  
Timothy J Heaton ◽  
Quan Hua ◽  
Jonathan G Palmer ◽  
Chris SM Turney ◽  
...  

ABSTRACTEarly researchers of radiocarbon levels in Southern Hemisphere tree rings identified a variable North-South hemispheric offset, necessitating construction of a separate radiocarbon calibration curve for the South. We present here SHCal20, a revised calibration curve from 0–55,000 cal BP, based upon SHCal13 and fortified by the addition of 14 new tree-ring data sets in the 2140–0, 3520–3453, 3608–3590 and 13,140–11,375 cal BP time intervals. We detail the statistical approaches used for curve construction and present recommendations for the use of the Northern Hemisphere curve (IntCal20), the Southern Hemisphere curve (SHCal20) and suggest where application of an equal mixture of the curves might be more appropriate. Using our Bayesian spline with errors-in-variables methodology, and based upon a comparison of Southern Hemisphere tree-ring data compared with contemporaneous Northern Hemisphere data, we estimate the mean Southern Hemisphere offset to be 36 ± 27 14C yrs older.


1986 ◽  
Vol 43 (5) ◽  
pp. 1028-1034 ◽  
Author(s):  
Gary K. Scott ◽  
Garth L. Fletcher ◽  
Peter L. Davies

A variety of antifreeze proteins is produced by marine teleosts inhabiting polar regions to ensure protection from internal ice formation at subzero temperatures. Combining evidence from paleoclimatology, teleostian evolution, and studies of antifreeze gene organization, the case is made for Cenozoic cooling as the force driving antifreeze evolution in marine teleosts. The distribution of antifreeze types amongst teleost suborders, families, genera, and species correlates with Cenozoic glaciation in the Southern Hemisphere preceding that in the Northern Hemisphere by approximately 25 million yr. The genomic organization of antifreeze genes suggests recent and extensive amplification, an event compatible with their proposed stress-induced origin. Also, a realignment of the nototheniids with the Gadiformes based on antifreeze protein data is suggested.


2012 ◽  
Vol 12 (7) ◽  
pp. 3241-3251 ◽  
Author(s):  
K. A. Pfaffhuber ◽  
T. Berg ◽  
D. Hirdman ◽  
A. Stohl

Abstract. Long term atmospheric mercury measurements in the Southern Hemisphere are scarce and in Antarctica completely absent. Recent studies have shown that the Antarctic continent plays an important role in the global mercury cycle. Therefore, long term measurements of gaseous elemental mercury (GEM) were initiated at the Norwegian Antarctic Research Station, Troll (TRS) in order to improve our understanding of atmospheric transport, transformation and removal processes of GEM. GEM measurements started in February 2007 and are still ongoing, and this paper presents results from the first four years. The mean annual GEM concentration of 0.93 ± 0.19 ng m−3 is in good agreement with other recent southern-hemispheric measurements. Measurements of GEM were combined with the output of the Lagrangian particle dispersion model FLEXPART, for a statistical analysis of GEM source and sink regions. It was found that the ocean is a source of GEM to TRS year round, especially in summer and fall. On time scales of up to 20 days, there is little direct transport of GEM to TRS from Southern Hemisphere continents, but sources there are important for determining the overall GEM load in the Southern Hemisphere and for the mean GEM concentration at TRS. Further, the sea ice and marginal ice zones are GEM sinks in spring as also seen in the Arctic, but the Antarctic oceanic sink seems weaker. Contrary to the Arctic, a strong summer time GEM sink was found, when air originates from the Antarctic plateau, which shows that the summertime removal mechanism of GEM is completely different and is caused by other chemical processes than the springtime atmospheric mercury depletion events. The results were corroborated by an analysis of ozone source and sink regions.


1952 ◽  
Vol 33 (10) ◽  
pp. 435-437 ◽  
Author(s):  
Leo Alpert

Synoptic map analysis of the Earth from the North Pole to the shores of the Antarctic Continent is now attained by combining the Southern Hemisphere map analysis of the U. S. Weather Bureau-M.I.T. Southern Hemisphere Map Analysis Project, and the Northern Hemisphere map analysis of the published Daily Historical Weather Maps. Sample synoptic maps of the Earth for 19 and 20 March 1949 are presented.


2018 ◽  
Vol 9 (3) ◽  
pp. 1025-1043 ◽  
Author(s):  
Mikhail Y. Verbitsky ◽  
Michel Crucifix ◽  
Dmitry M. Volobuev

Abstract. Variations in Northern Hemisphere ice volume over the past 3 million years have been described in numerous studies and well documented. These studies depict the mid-Pleistocene transition from 40 kyr oscillations of global ice to predominantly 100 kyr oscillations around 1 million years ago. It is generally accepted to attribute the 40 kyr period to astronomical forcing and to attribute the transition to the 100 kyr mode to a phenomenon caused by a slow trend, which around the mid-Pleistocene enabled the manifestation of nonlinear processes. However, both the physical nature of this nonlinearity and its interpretation in terms of dynamical systems theory are debated. Here, we show that ice-sheet physics coupled with a linear climate temperature feedback conceal enough dynamics to satisfactorily explain the system response over the full Pleistocene. There is no need, a priori, to call for a nonlinear response of the carbon cycle. Without astronomical forcing, the obtained dynamical system evolves to equilibrium. When it is astronomically forced, depending on the values of the parameters involved, the system is capable of producing different modes of nonlinearity and consequently different periods of rhythmicity. The crucial factor that defines a specific mode of system response is the relative intensity of glaciation (negative) and climate temperature (positive) feedbacks. To measure this factor, we introduce a dimensionless variability number, V. When positive feedback is weak (V∼0), the system exhibits fluctuations with dominating periods of about 40 kyr which is in fact a combination of a doubled precession period and (to smaller extent) obliquity period. When positive feedback increases (V∼0.75), the system evolves with a roughly 100 kyr period due to a doubled obliquity period. If positive feedback increases further (V∼0.95), the system produces fluctuations of about 400 kyr. When the V number is gradually increased from its low early Pleistocene values to its late Pleistocene value of V∼0.75, the system reproduces the mid-Pleistocene transition from mostly 40 kyr fluctuations to a 100 kyr period rhythmicity. Since the V number is a combination of multiple parameters, it implies that multiple scenarios are possible to account for the mid-Pleistocene transition. Thus, our theory is capable of explaining all major features of the Pleistocene climate, such as the mostly 40 kyr fluctuations of the early Pleistocene, a transition from an early Pleistocene type of nonlinear regime to a late Pleistocene type of nonlinear regime, and the 100 kyr fluctuations of the late Pleistocene. When the dynamical climate system is expanded to include Antarctic glaciation, it becomes apparent that climate temperature positive feedback (or its absence) plays a crucial role in the Southern Hemisphere as well. While the Northern Hemisphere insolation impact is amplified by the outside-of-glacier climate and eventually affects Antarctic surface and basal temperatures, the Antarctic ice-sheet area of glaciation is limited by the area of the Antarctic continent, and therefore it cannot engage in strong positive climate feedback. This may serve as a plausible explanation for the synchronous response of the Northern and Southern Hemisphere to Northern Hemisphere insolation variations. Given that the V number is dimensionless, we consider that this model could be used as a framework to investigate other physics that may possibly be involved in producing ice ages. In such a case, the equation currently representing climate temperature would describe some other climate component of interest, and as long as this component is capable of producing an appropriate V number, it may perhaps be considered a feasible candidate.


1998 ◽  
Vol 27 ◽  
pp. 153-160 ◽  
Author(s):  
W. F. Budd ◽  
B. Coutts ◽  
Roland C. Warner

The future behaviour of the Antarctic ice sheet depends to some extent on its current state of balance and its past history. The past history is primarily influenced by global climate changes, with some small amount of local feedback, and by sea-level changes generated primarily by the Northern Hemisphere ice-sheet changes, again with a small amount of feedback from the Antarctic ice sheet. An ice-sheet model which includes ice shelves has been used to model the Antarctic region and the whole Northern Hemisphere high-latitude region through the last ice-age cycle. For the climate forcing, the results from the global energy-balance model of Budd and Rayner (1990) are used. These are based on the Earth's orbital radiation changes with ice-sheet albedo feedback. Additional sensitivity studies are carried out for the amplitudes of the derived temperature changes and for changes in precipitation over the ice-sheets. For the Antarctic snow-accumulation changes, the results from the Voslok ice core are used with proportional changes over the rest of the ice sheet. For the sea-level variations, the results generated by the Northern Hemisphere ice-sheet changes provide the primary forcing, but account is also taken of the feedback effects from bed response under changing ice and ocean loading and from the Antarctic changes. The results of the modelling provide a wide range of features for comparison with observations, such as the margins of maximum ice extent. For the Northern Hemisphere the results indicate that the peak mean temperature shift required for the ice-edge region is about -12°C, whereas outside the ice-sheet region this change is smaller but over the ice sheets it is larger. For the Antarctic region during the ice age the interior region decreases in thickness, due to lower accumulation, while the grounding-edge region expands and thickens due to the sea-level lowering. As a result, the derived present state of balance shows a positive region over most of inland East Antarctica, whereas coastal regions tend to be nearer to balance, with some slightly negative regions around some of the large ice shelves and coastal ice streams which are still adjusting slowly to the post-ice-age changes of sea level and accumulation rates.


Sign in / Sign up

Export Citation Format

Share Document