scholarly journals African Dust Particles over the Western Caribbean Part I: Impact on air quality over the Yucatan Peninsula

2020 ◽  
Author(s):  
Carolina Ramirez-Romero ◽  
Alejandro Jaramillo ◽  
Maria F. Cordoba ◽  
Graciela B. Raga ◽  
Javier Miranda ◽  
...  

Abstract. On a global scale, African dust is known as one of the major sources of mineral dust particles as they can be efficiently transported to different parts of the planet. Several studies have suggested that the Yucatan Peninsula could be influenced by such particles, especially in July, associated with the strengthening of the Caribbean low level jet. Although these particles have the potential to impact the local air quality significantly, as shown elsewhere (especially particulate matter, PM), the arrival and the impact of African dust into Mexican territory has not been quantitatively reported to date. Two short-term field campaigns were conducted to confirm the arrival of African dust onto the Yucatan Peninsula in July 2017 and July 2018 at the city of Merida atmospheric observatory (20.98° N 89.64° W). Aerosol particles were monitored at the ground level by different on-line and off-line sensors. Several PM2.5 and PM10 peaks were observed during both sampling periods, with a relative increase in the PM levels ranging between 200 % and 500 % with respect to the normal background. Given that these peaks were found to highly correlate with super micron particles and chemical elements typically found in mineral dust particles, such as Al, Fe, Si, and K, they are linked with African dust. This conclusion is supported by combining back trajectories with vertical profiles from radiosondes, reanalysis, and satellite images to show that the origin of the air masses arriving at Merida was the Saharan Air Layer (SAL). The good agreement found between the measured PM>sub>10 concentrations and the estimated dust mixing ratio content from MERRA-2 (Version 2 of the Modern-Era Retrospective analysis for Research and Applications) corroborates the conclusion that the degradation of the local (and likely regional) air quality in Merida is a result of the arrival of African dust.

2021 ◽  
Vol 21 (1) ◽  
pp. 239-253
Author(s):  
Carolina Ramírez-Romero ◽  
Alejandro Jaramillo ◽  
María F. Córdoba ◽  
Graciela B. Raga ◽  
Javier Miranda ◽  
...  

Abstract. On a global scale, African dust is known to be one of the major sources of mineral dust particles, as these particles can be efficiently transported to different parts of the planet. Several studies have suggested that the Yucatán Peninsula could be influenced by such particles, especially in July, associated with the strengthening of the Caribbean low-level jet. Although these particles have the potential to significantly impact the local air quality, as shown elsewhere (especially with respect to particulate matter, PM), the arrival and impact of African dust in Mexican territory has not been quantitatively reported to date. Two short-term field campaigns were conducted to confirm the arrival of African dust on the Yucatán Peninsula in July 2017 and July 2018 at the Mérida atmospheric observatory (20.98∘ N, 89.64∘ W). Aerosol particles were monitored at ground level using different online and off-line sensors. Several PM2.5 and PM10 peaks were observed during both sampling periods, with a relative increase in the PM levels ranging between 200 % and 500 % with respect to the normal background conditions. Given that these peaks were found to be highly correlated with supermicron particles and chemical elements typically found in mineral dust particles, such as Al, Fe, Si, and K, they are linked with African dust. This conclusion is supported by combining back trajectories with vertical profiles from radiosondes, reanalysis, and satellite images to show that the origin of the air masses arriving at Mérida was the Saharan Air Layer (SAL). The good agreement found between the measured PM10 concentrations and the estimated dust mixing ratio content from MERRA-2 (Version 2 of the Modern-Era Retrospective analysis for Research and Applications) corroborates the conclusion that the degradation of the local (and likely regional) air quality in Mérida is a result of the arrival of African dust.


2020 ◽  
Author(s):  
Carolina Ramirez-Romero ◽  
Alejandro Jaramillo ◽  
Maria F. Cordoba ◽  
Graciela B. Raga ◽  
Javier Miranda ◽  
...  

2018 ◽  
Vol 18 (24) ◽  
pp. 18203-18217 ◽  
Author(s):  
Yu Tian ◽  
Xiaole Pan ◽  
Tomoaki Nishizawa ◽  
Hiroshi Kobayashi ◽  
Itsushi Uno ◽  
...  

Abstract. East Asia is suffering from severe air pollution problems due to intensive anthropogenic emissions and natural mineral dust aerosols. During transport, the aerosol particles undergo complex mixing processes, resulting in great impacts on regional air quality, human health and climate. In this study, we conducted a long-term observation using an optical particle counter equipped with a polarization detection module (POPC) at an urban site in Beijing. Mass concentrations of both PM2.5 and PM10 estimated from POPC compared well with ground-based measurements. The results revealed that the observed depolarization ratio (δ, termed as the ratio of the intensity of the s-polarized signal to the intensity of the 120∘ backward scattering signal [s/(s+p)]) for aerosol particles in the fine mode was generally much lower in summer than that in spring as a result of predominance of different aerosol types. Mineral dust particles in the coarse mode normally had a large δ value (0.3±0.05) owing to their nonspherical shape; however, particles in the fine mode mostly had water-soluble compositions, which led to an apparent decrease of their δ values in particular high relative humidity (RH) conditions. Because the observation site was subject to the impact of frequent dust events in spring, the δ value of particle at 1 µm was almost twice as high as that (0.07±0.01) in summer. Based on size-resolved δ values, anthropogenic pollutants, mineral dust and polluted mineral dust particles and their contribution to local air quality could be well distinguished. About 26.7 % of substandard days (daily averaged PM2.5 concentration larger than 75 µg m−3) in Beijing featured high atmospheric loading of coarse-mode particles in winter and springtime. In particular, during severe pollution episodes in winter, the δ values of coarse-mode particles decreased by 13 %, which implies a high possibility of dust-related heterogeneous processes in pollution formation. During dust events, δ values of particles with optical size (Dp) of 5 µm evidently decreased, with an increase of the PM2.5 ∕ PM10 ratio as well as RH, indicating the morphological changes of mineral dust. This study confirmed that high RH tends to promote water absorption processes on the dust surface as well as the coating of soluble compounds, and suggested that remote sensing techniques for aerosols may underestimate the impact of dust particles due to the complex mixing of dust and anthropogenic particles in urban areas, and the interaction between dust particles and pollutants should be considered well by the optical model.


Author(s):  
Graciela B. Raga ◽  
Luis A. Ladino ◽  
Darrel Baumgardner ◽  
Carolina Ramirez-Romero ◽  
Fernanda Córdoba ◽  
...  

AbstractBiomass burning (BB) emissions and African dust (AD) are often associated with poor regional air quality, particularly in the tropics. The Yucatan Peninsula is a fairly pristine site due to predominant trade winds, but occasionally BB and AD plumes severely degrade its air quality. The African Dust And Biomass Burning Over Yucatan (ADABBOY) project (Jan 2017- Aug 2018) was conducted in the Yucatan Peninsula to characterize physical and biological properties of particulate pollution at remote seaside and urban sites. The 18-month long project quantified the large interannual variability in frequency and spatial extent of BB and AD plumes. Remote and urban sites experienced air quality degradation under the influence of these plumes, with up to 200 and 300% increases in coarse particle mass under BB and AD influence, respectively. ADABBOY is the first project to systematically characterize elemental composition of airborne particles as a function of these sources and identify bioaerosol over Yucatan. Bacteria, actinobacteria (both continental and marine) and fungi propagules vary seasonally and interannually and revealed the presence of very different species and genera associated with different sources. A novel contribution of ADABBOY was the determination of the ice-nucleating abilities of particles emitted by different sources within an under-sampled region of the world. BB particles were found to be inefficient ice nucleating particles at temperatures warmer than -20°C, whereas both AD and background marine aerosol activated ice nucleating particles below -10°C.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Mariola Jabłońska ◽  
Janusz Janeczek ◽  
Beata Smieja-Król

For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in the Upper Silesia conurbation in Poland and who had died from causes not related to a lung disorder were determined by transmission and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in the studied RLL tissue were almost exclusively carbonates, specifically Mg-calcite and calcite. These constituted 37% of the 1652 mineral particles examined. Mg-calcite predominated in the submicrometer size range, with a MgCO3 content up to 50 mol %. Magnesium plays a significant role in lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in the studied RLL tissue was negligible. The predominance of carbonates is explained by the increased CO2 fugacity in the RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC), followed by its transformation to calcite; (2) precipitation of Mg-ACC, followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC, causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than was observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification.


2020 ◽  
Vol 237 ◽  
pp. 03012
Author(s):  
Christoph Senff ◽  
Andrew Langford ◽  
Raul Alvarez ◽  
Tim Bonin ◽  
Alan Brewer ◽  
...  

Recently, two air quality campaigns were conducted in the southwestern United States to study the impact of transported ozone, stratospheric intrusions, and fire emissions on ground-level ozone concentrations. The California Baseline Ozone Transport Study (CABOTS) took place in May – August 2016 covering the central California coast and San Joaquin Valley, and the Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS) was conducted in the greater Las Vegas, Nevada area in May – June 2017. During these studies, nearly 1000 hours of ozone and aerosol profile data were collected with the NOAA TOPAZ lidar. A Doppler wind lidar and a radar wind profiler provided continuous observations of atmospheric turbulence, horizontal winds, and mixed layer height. These measurements allowed us to directly observe the degree to which ozone transport layers aloft were entrained into the boundary layer and to quantify the resulting impact on surface ozone levels. Mixed layer heights in the San Joaquin Valley during CABOTS were generally below 1 km above ground level (AGL), while boundary layer heights in Las Vegas during FAST-LVOS routinely exceeded 3 km AGL and occasionally reached up to 4.5 km AGL. Consequently, boundary layer entrainment was more often observed during FAST-LVOS, while most elevated ozone layers passed untapped over the San Joaquin Valley during CABOTS.


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 114
Author(s):  
Jiří Bílek ◽  
Ondřej Bílek ◽  
Petr Maršolek ◽  
Pavel Buček

Sensor technology is attractive to the public due to its availability and ease of use. However, its usage raises numerous questions. The general trustworthiness of sensor data is widely discussed, especially with regard to accuracy, precision, and long-term signal stability. The VSB-Technical University of Ostrava has operated an air quality sensor network for more than two years, and its large sets of valid results can help in understanding the limitations of sensory measurement. Monitoring is focused on the concentrations of dust particles, NO2, and ozone to verify the impact of newly planted greenery on the reduction in air pollution. The sensor network currently covers an open field on the outskirts of Ostrava, between Liberty Ironworks and the nearby ISKO1650 monitoring station, where some of the worst air pollution levels in the Czech Republic are regularly measured. In the future, trees should be allowed to grow over the sensors, enabling assessment of the green barrier effect on air pollution. As expected, the service life of the sensors varies from 1 to 3 years; therefore, checks are necessary both prior to the measurement and regularly during operation, verifying output stability and overall performance. Results of the PMx sensory measurements correlated well with the reference method. Concentration values measured by NO2 sensors correlated poorly with the reference method, although timeline plots of concentration changes were in accordance. We suggest that a comparison of timelines should be used for air quality evaluations, rather than particular values. The results showed that the sensor measurements are not yet suitable to replace the reference methods, and dense sensor networks proved useful and robust tools for indicative air quality measurements (AQM).


Author(s):  
Mariola Jablonska ◽  
Janusz Janeczek ◽  
Beata Smieja-Król

For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical- and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in Upper Silesia Conurbation in Poland and who had died from causes not related to lung disorder were determined by transmission- and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in RLL are almost exclusively carbonates, i.e. Mg-calcite and calcite. These constitute 37% of 1652 mineral particles examined. Mg-calcite predominates in the submicron size range with the MgCO3 content up to 50 mol%. Magnesium plays a significant role in the lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in RLL is negligible. The predominance of carbonates is explained by increased CO2 fugacity in RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC) followed by its transformation to calcite; (2) precipitation of Mg-ACC followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification.


Sign in / Sign up

Export Citation Format

Share Document