scholarly journals A review of the Match technique as applied to AASE-2/EASOE and SOLVE/THESEO 2000

2005 ◽  
Vol 5 (9) ◽  
pp. 2571-2592 ◽  
Author(s):  
G. A. Morris ◽  
B. R. Bojkov ◽  
L. R. Lait ◽  
M. R. Schoeberl

Abstract. We apply the NASA Goddard Trajectory Model to data from a series of ozonesondes to derive ozone loss rates in the lower stratosphere for the AASE-2/EASOE mission (January-March 1992) and for the SOLVE/THESEO 2000 mission (January-March 2000) in an approach similar to Match. Ozone loss rates are computed by comparing the ozone concentrations provided by ozonesondes launched at the beginning and end of the trajectories connecting the launches. We investigate the sensitivity of the Match results to the various parameters used to reject potential matches in the original Match technique. While these filters effectively eliminate from consideration 80% of the matched sonde pairs and >99% of matched observations in our study, we conclude that only a filter based on potential vorticity changes along the calculated back trajectories seems warranted. Our study also demonstrates that the ozone loss rates estimated in Match can vary by up to a factor of two depending upon the precise trajectory paths calculated for each trajectory. As a result, the statistical uncertainties published with previous Match results might need to be augmented by an additional systematic error. The sensitivity to the trajectory path is particularly pronounced in the month of January, for which the largest ozone loss rate discrepancies between photochemical models and Match are found. For most of the two study periods, our ozone loss rates agree with those previously published. Notable exceptions are found for January 1992 at 475K and late February/early March 2000 at 450K, both periods during which we generally find smaller loss rates than the previous Match studies. Integrated ozone loss rates estimated by Match in both of those years compare well with those found in numerous other studies and in a potential vorticity/potential temperature approach shown previously and in this paper. Finally, we suggest an alternate approach to Match using trajectory mapping. This approach uses information from all matched observations without filtering and uses a two-parameter fit to the data to produce robust ozone loss rate estimates. As compared to loss rates from our version of Match, the trajectory mapping approach produces generally smaller loss rates, frequently not statistically significantly different from zero, calling into question the efficacy of the Match approach.

2004 ◽  
Vol 4 (4) ◽  
pp. 4665-4717 ◽  
Author(s):  
G. A. Morris ◽  
B. R. Bojkov ◽  
L. R. Lait ◽  
M. R. Schoeberl

Abstract. We apply the NASA Goddard Trajectory Model with a series of ozonesondes to derive ozone loss rates in the lower stratosphere for the AASE-2/EASOE mission (January–March 1992) and for the SOLVE/THESEO 2000 mission (January–March 2000) in an approach similar to Match. Ozone loss rates are computed by comparing the ozone concentrations provided by ozonesondes launched at the beginning and end of the trajectories connecting the launches. We investigate the sensitivity of the Match results to the various parameters used to reject potential matches in the original Match technique. While these filters effectively eliminate from consideration ≥80% of the matched sonde pairs and >99% of matched observations, we conclude that only a filter based on potential vorticity changes along the calculated back trajectories seems warranted. Our study also demonstrates that the ozone loss rates estimated in Match can vary by up to a factor of two depending upon the precise trajectory paths calculated for each trajectory. As a result, the statistical uncertainties published with previous Match results might need to be augmented by an additional systematic error. The sensitivity to the trajectory path is particularly pronounced in the month of January, for which the largest ozone loss rate discrepancies between photochemical models and Match are found. For most of the two study periods, our ozone loss rates agree with those previously published. Notable exceptions are found for January 1992 at 475 K and late February/early March 2000 at 450 K, both periods during which we find less loss than the previous Match studies. Integrated ozone loss rates estimated by Match in both of those years compare well with those found in numerous other studies and in a potential vorticity/potential temperature approach shown previously and in this paper. Finally, we suggest an alternate approach to Match using trajectory mapping. This approach uses information from all matched observations without filtering to produce robust ozone loss rate estimates.


2005 ◽  
Vol 5 (4) ◽  
pp. 4311-4333 ◽  
Author(s):  
M. Streibel ◽  
M. Rex ◽  
P. von der Gathen ◽  
R. Lehmann ◽  
N. R. P. Harris ◽  
...  

Abstract. The Match technique was used to determine chemically induced ozone loss inside the stratospheric vortex during the Arctic winter 2002/2003. From end of November 2002, which is the earliest start of a Match campaign ever, until end of March 2003 approximately 800 ozonesondes were launched from 30 stations in the Arctic and mid latitudes. Ozone loss rates were quantified from the beginning of December until mid of March in the vertical region of 400–550 K potential temperature. In December ozone destruction rates varied between 10–15 ppbv/day depending on height. Maximum loss rates around 35 ppbv/day were reached during late January. Afterwards ozone loss rates decreased until mid-March when the final warming of the vortex began and measurements for the campaign were no longer possible. In the period of 2 December 2002 to 16 March 2003 the accumulated ozone loss reduced the partial ozone column of 400–500 K potential temperature by 56±4 DU. The sensitivity of the results on recent improvements of the approach has been tested.


2003 ◽  
Vol 3 (2) ◽  
pp. 395-402 ◽  
Author(s):  
J.-U. Grooß ◽  
R. Müller

Abstract. Current stratospheric chemical model simulations underestimate substantially the large ozone loss rates that are derived for the Arctic from ozone sondes for January of some years. Until now, no explanation for this discrepancy has been found. Here, we examine the influence of intrusions of mid-latitude air into the polar vortex on these ozone loss estimates. This study focuses on the winter 1991/92, because during this winter the discrepancy between simulated and experimentally derived ozone loss rates is reported to be the largest. Also during the considered period the vortex was disturbed by a strong warming event with large-scale intrusions of mid-latitude air into the polar vortex, which is quite unusual for this time of the year. The study is based on simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Two methods for determination the ozone loss are investigated, the so-called vortex average approach and the Match method. The simulations for January 1992 show that the intrusions induce a reduction of vortex average ozone mixing ratio corresponding to a systematic offset of the ozone loss rate of about 12 ppb per day. This should be corrected for in the vortex average method. The simulations further suggest, that these intrusions do not cause a significant bias for the Match method due to effective quality control measures in the Match technique.


2019 ◽  
Vol 76 (1) ◽  
pp. 209-229 ◽  
Author(s):  
Patrick Duran ◽  
John Molinari

Abstract Upper-level static stability (N2) variations can influence the evolution of the transverse circulation and potential vorticity in intensifying tropical cyclones (TCs). This paper examines these variations during the rapid intensification (RI) of a simulated TC. Over the eye, N2 near the tropopause decreases and the cold-point tropopause rises by up to 4 km at the storm center. Outside of the eye, N2 increases considerably just above the cold-point tropopause and the tropopause remains near its initial level. A budget analysis reveals that the advection terms, which include differential advection of potential temperature θ and direct advection of N2, are important throughout the upper troposphere and lower stratosphere. These terms are particularly pronounced within the eye, where they destabilize the layer near and above the cold-point tropopause. Outside of the eye, a radial–vertical circulation develops during RI, with strong outflow below the tropopause and weak inflow above. Differential advection of θ near the outflow jet provides forcing for stabilization below the outflow maximum and destabilization above. Turbulence induced by vertical wind shear on the flanks of the outflow maximum also modifies the vertical stability profile. Meanwhile, radiative cooling tendencies at the top of the cirrus canopy generally act to destabilize the upper troposphere and stabilize the lower stratosphere. The results suggest that turbulence and radiation, alongside differential advection, play fundamental roles in the upper-level N2 evolution of TCs. These N2 tendencies could have implications for both the TC diurnal cycle and the tropopause-layer potential vorticity evolution in TCs.


2006 ◽  
Vol 6 (10) ◽  
pp. 2783-2792 ◽  
Author(s):  
M. Streibel ◽  
M. Rex ◽  
P. von der Gathen ◽  
R. Lehmann ◽  
N. R. P. Harris ◽  
...  

Abstract. The Match technique was used to determine chemically induced ozone loss inside the stratospheric vortex during the Arctic winter 2002/2003. From end of November 2002, which is the earliest start of a Match campaign ever, until end of March 2003 approximately 800 ozonesondes were launched from 34 stations in the Arctic and mid latitudes. Ozone loss rates were quantified from the beginning of December until mid-March in the vertical region of 400–550 K potential temperature. In accordance with the occurrence of a large area of conditions favourable for the formation of polar stratospheric clouds in December ozone destruction rates varied between 10–15 ppbv/day depending on height. Maximum loss rates around 35 ppbv/day were reached during late January. Afterwards ozone loss rates decreased until mid-March when the final warming of the vortex began. In the period from 2 December 2002 to 16 March 2003 the accumulated ozone loss reduced the partial ozone column of 400–500 K potential temperature by 56±4 DU. This value is in good agreement with that inferred from the empirical relation of ozone loss against the volume of potential polar stratospheric clouds within the northern hemisphere. The sensitivity of the results on recent improvements of the approach has been tested.


2013 ◽  
Vol 133 (9) ◽  
pp. 465-470
Author(s):  
Kazuki Omiya ◽  
Ilko Mitkov Rusinov ◽  
Susumu Suzuki ◽  
Haruo Itoh

2015 ◽  
Vol 15 (13) ◽  
pp. 7667-7684 ◽  
Author(s):  
Fuqing Zhang ◽  
Junhong Wei ◽  
Meng Zhang ◽  
K. P. Bowman ◽  
L. L. Pan ◽  
...  

Abstract. This study analyzes in situ airborne measurements from the 2008 Stratosphere–Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS). The focus is on the second research flight (RF02), which took place on 21–22 April 2008. This was the first airborne mission dedicated to probing gravity waves associated with strong upper-tropospheric jet–front systems. Based on spectral and wavelet analyses of the in situ observations, along with a diagnosis of the polarization relationships, clear signals of mesoscale variations with wavelengths ~ 50–500 km are found in almost every segment of the 8 h flight, which took place mostly in the lower stratosphere. The aircraft sampled a wide range of background conditions including the region near the jet core, the jet exit and over the Rocky Mountains with clear evidence of vertically propagating gravity waves of along-track wavelength between 100 and 120 km. The power spectra of the horizontal velocity components and potential temperature for the scale approximately between ~ 8 and ~ 256 km display an approximate −5/3 power law in agreement with past studies on aircraft measurements, while the fluctuations roll over to a −3 power law for the scale approximately between ~ 0.5 and ~ 8 km (except when this part of the spectrum is activated, as recorded clearly by one of the flight segments). However, at least part of the high-frequency signals with sampled periods of ~ 20–~ 60 s and wavelengths of ~ 5–~ 15 km might be due to intrinsic observational errors in the aircraft measurements, even though the possibilities that these fluctuations may be due to other physical phenomena (e.g., nonlinear dynamics, shear instability and/or turbulence) cannot be completely ruled out.


2021 ◽  
pp. 17-28
Author(s):  
A. V. Gochakov ◽  
◽  
O. Yu. Antokhina ◽  
V. N. Krupchatnikov ◽  
Yu. V. Martynova ◽  
...  

Many large-scale dynamic phenomena in the Earth’s atmosphere are associated with the processes of propagation and breaking of Rossby waves. A new method for identifying the Rossby wave breaking (RWB) is proposed. It is based on the detection of breakings centers by analyzing the shape of the contours of potential vorticity or temperature on quasimaterial surfaces: isentropic and iserthelic (surfaces of constant Ertel potential vorticity (PV)), with further RWB center clustering to larger regions. The method is applied to the set of constant PV levels (0.3 to 9.8 PVU with a step of 0.5 PVU) at the level of potential temperature of 350 K for 12:00 UTC. The ERA-Interim reanalysis data from 1979 to 2019 are used for the method development. The type of RWB (cyclonic/anticyclonic), its area and center are determined by analyzing the vortex geometry at each PV level for every day. The RWBs obtained at this stage are designated as elementary breakings. Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) was applied to all elementary breakings for each month. As a result, a graphic dataset describing locations and dynamics of RWBs for every month from 1979 to 2019 is formed. The RWB frequency is also evaluated for each longitude, taking into account the duration of each RWB and the number of levels involved, as well as the anomalies of these parameters.


2017 ◽  
Author(s):  
Laura Revell ◽  
Andrea Stenke ◽  
Beiping Luo ◽  
Stefanie Kremser ◽  
Eugene Rozanov ◽  
...  

Abstract. To simulate the impacts of volcanic eruptions on the stratosphere, chemistry-climate models that do not include an online aerosol module require temporally and spatially resolved aerosol size parameters for heterogeneous chemistry and aerosol radiative properties as a function of wavelength. For phase 1 of the Chemistry-Climate Model Initiative (CCMI-1) and, later, for phase 6 of the Coupled Model Intercomparison Project (CMIP6) two such stratospheric aerosol data sets were compiled, whose functional capability and representativeness are compared here. For CCMI-1, the SAGE-4λ data set was compiled, which hinges on the measurements at four wavelengths of the SAGE (Stratospheric Aerosol and Gas Experiment) II satellite instrument and uses ground-based Lidar measurements for gap-filling immediately after the Mt. Pinatubo eruption, when the stratosphere was optically opaque for SAGE II. For CMIP6, the new SAGE-3λ data set was compiled, which excludes the least reliable SAGE II wavelength and uses CLAES (Cryogenic Limb Array Etalon Spectrometer) measurements on UARS, the Upper Atmosphere Research Satellite, for gap-filling following the Mt. Pinatubo eruption instead of ground-based Lidars. Here, we performed SOCOLv3 (Solar Climate Ozone Links version 3) chemistry-climate model simulations of the recent past (1986–2005) to investigate the impact of the Mt. Pinatubo eruption in 1991 on stratospheric temperature and ozone and how this response differs depending on which aerosol data set is applied. The use of SAGE-4λ results in heating and ozone loss being overestimated in the lower stratosphere compared to observations in the post-eruption period by approximately 3 K and 0.2 ppmv, respectively. However, less heating occurs in the model simulations based on SAGE-3λ, because the improved gap-filling procedures after the eruption lead to less aerosol loading in the tropical lower stratosphere. As a result, simulated temperature anomalies in the model simulations based on SAGE-3λ for CMIP6 are in excellent agreement with MERRA and ERA-Interim reanalyses in the post-eruption period. Less heating in the simulations with SAGE-3λ means that the rate of tropical upwelling does not strengthen as much as it does in the simulations with SAGE-4λ, which limits dynamical uplift of ozone and therefore provides more time for ozone to accumulate in tropical mid-stratospheric air. Ozone loss following the Mt. Pinatubo eruption is overestimated by 0.1 ppmv in the model simulations based on SAGE-3λ, which is a better agreement with observations than in the simulations based on SAGE-4λ. Overall, the CMIP6 stratospheric aerosol data set, SAGE-3λ, allows SOCOLv3 to more accurately simulate the post-Pinatubo eruption period.


2005 ◽  
Vol 5 (6) ◽  
pp. 1437-1448 ◽  
Author(s):  
J.-U. Grooß ◽  
G. Günther ◽  
R. Müller ◽  
P. Konopka ◽  
S. Bausch ◽  
...  

Abstract. We present simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the Arctic winter 2002/2003. We integrated a Lagrangian denitrification scheme into the three-dimensional version of CLaMS that calculates the growth and sedimentation of nitric acid trihydrate (NAT) particles along individual particle trajectories. From those, we derive the HNO3 downward flux resulting from different particle nucleation assumptions. The simulation results show a clear vertical redistribution of total inorganic nitrogen ( ), with a maximum vortex average permanent removal of over 5ppb in late December between 500 and 550K and a corresponding increase of of over 2ppb below about 450K. The simulated vertical redistribution of is compared with balloon observations by MkIV and in-situ observations from the high altitude aircraft Geophysica. Assuming a globally uniform NAT particle nucleation rate of 7.8x10-6cm-3h-1 in the model, the observed denitrification is well reproduced. In the investigated winter 2002/2003, the denitrification has only moderate impact (≤14%) on the simulated vortex average ozone loss of about 1.1ppm near the 460K level. At higher altitudes, above 600K potential temperature, the simulations show significant ozone depletion through -catalytic cycles due to the unusual early exposure of vortex air to sunlight.


Sign in / Sign up

Export Citation Format

Share Document