scholarly journals A meteorological overview of the MILAGRO field campaigns

2007 ◽  
Vol 7 (9) ◽  
pp. 2233-2257 ◽  
Author(s):  
J. D. Fast ◽  
B. de Foy ◽  
F. Acevedo Rosas ◽  
E. Caetano ◽  
G. Carmichael ◽  
...  

Abstract. We describe the large-scale meteorological conditions that affected atmospheric chemistry over Mexico during March 2006 when several field campaigns were conducted in the region. In-situ and remote-sensing instrumentation was deployed to obtain measurements of wind, temperature, and humidity profiles in the boundary layer and free atmosphere at four primary sampling sites in central Mexico. Several models were run operationally during the field campaign to provide forecasts of the local, regional, and synoptic meteorology as well as the predicted location of the Mexico City pollutant plume for aircraft flight planning purposes. Field campaign measurements and large-scale analyses are used to define three regimes that characterize the overall meteorological conditions: the first regime prior to 14 March, the second regime between 14 and 23 March, and the third regime after 23 March. Mostly sunny and dry conditions with periods of cirrus and marine stratus along the coast occurred during the first regime. The beginning of the second regime was characterized by a sharp increase in humidity over the central plateau and the development of late afternoon convection associated with the passage of a weak cold surge on 14 March. Over the next several days, the atmosphere over the central plateau became drier so that deep convection gradually diminished. The third regime began with the passage of a strong cold surge that lead to humidity, afternoon convection, and precipitation over the central plateau that was higher than during the second regime. The frequency and intensity of fires, as determined by satellite measurements, also diminished significantly after the third cold surge. The synoptic-scale flow patterns that govern the transport of pollutants in the region are described and compared to previous March periods to put the transport into a climatological context. The complex terrain surrounding Mexico City produces local and regional circulations that govern short-range transport; however, the mean synoptic conditions modulate the thermally-driven circulations and on several days the near-surface flow is coupled to the ambient winds aloft.

2007 ◽  
Vol 7 (1) ◽  
pp. 2037-2089 ◽  
Author(s):  
J. D. Fast ◽  
B. de Foy ◽  
F. Acevedo Rosas ◽  
E. Caetano ◽  
G. Carmichael ◽  
...  

Abstract. We describe the large-scale meteorological conditions that affected atmospheric chemistry over Mexico during March 2006 when several field campaigns were conducted in the region. In-situ and remote-sensing instrumentation was deployed to obtain measurements of wind, temperature, and humidity profiles in the boundary layer and free atmosphere at four primary sampling sites in central Mexico. Several models were run operationally during the field campaign to provide forecasts of the local, regional, and synoptic meteorology as well as the predicted location of the Mexico City pollutant plume for aircraft flight planning purposes. Field campaign measurements and large-scale analyses are used to define three regimes that characterize the overall meteorological conditions: the first regime prior to 14 March, the second regime between 14 and 23 March, and the third regime after 23 March. Mostly sunny and dry conditions with periods of cirrus and marine stratus along the coast occurred during the first regime. The beginning of the second regime was characterized by a sharp increase in humidity over the central plateau and the development of late afternoon convection associated with the passage of a weak cold surge on 14 March. Over the next several days, the atmosphere over the central plateau became drier so that deep convection gradually diminished. The third regime began with the passage of a strong cold surge that lead to humidity, afternoon convection, and precipitation over the central plateau that was higher than during the second regime. The frequency and intensity of fires, as determined by satellite measurements, also diminished significantly after the third cold surge. The synoptic-scale flow patterns that govern the transport of pollutants in the region are described and compared to previous March periods to put the transport into a climatological context. The complex terrain surrounding Mexico City produces local and regional circulations that govern short-range transport; however, the mean synoptic conditions modulate the thermally-driven circulations and on several days the near-surface flow is coupled to the ambient winds aloft.


2016 ◽  
Author(s):  
Yucong Miao ◽  
Jianping Guo ◽  
Shuhua Liu ◽  
Huan Liu ◽  
Zhanqing Liu ◽  
...  

Abstract. Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 μm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925-hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The cold advection induced by the large-scale synoptic forcing may have cooled the PBL, leading to an increase in near-surface stability and a decrease in the BLH in the afternoon. Moreover, when warm advection appeared simultaneously above the top level of the PBL, the thermal inversion layer capping the PBL may have been strengthened, resulting in further suppression of the PBL and deteriorating aerosol pollution levels. This study has important implications for understanding the crucial roles that meteorological factors (at both synoptic and local scales) play in modulating and forecasting aerosol pollution in Beijing and its surrounding area.


2017 ◽  
Vol 17 (4) ◽  
pp. 3097-3110 ◽  
Author(s):  
Yucong Miao ◽  
Jianping Guo ◽  
Shuhua Liu ◽  
Huan Liu ◽  
Zhanqing Li ◽  
...  

Abstract. Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold advection induced by the large-scale synoptic forcing may have cooled the PBL, leading to an increase in near-surface stability and a decrease in the BLH in the afternoon. Moreover, when warm advection appeared simultaneously above the top level of the PBL, the thermal inversion layer capping the PBL may have been strengthened, resulting in the further suppression of PBL and thus the deterioration of aerosol pollution levels. This study has important implications for understanding the crucial roles that meteorological factors (at both synoptic and local scales) play in modulating and forecasting aerosol pollution in Beijing and its surrounding area.


2005 ◽  
Vol 5 (3) ◽  
pp. 2503-2558 ◽  
Author(s):  
B. de Foy ◽  
E. Caetano ◽  
V. Magaña ◽  
A. Zitácuaro ◽  
B. Cárdenas ◽  
...  

Abstract. MCMA-2003 was a major field campaign investigating the atmospheric chemistry of the Mexico City Metropolitan Area (MCMA) in April of 2003. This paper describes the wind circulation patterns during the campaign both within the Mexico City basin and on the regional scale. ''Time roses'' are introduced to concisely analyze the diurnal wind patterns. Three episode types were identified that explain the conditions encountered: ''O3-South'', ''Cold Surge'' and ''O3-North''. These can be diagnosed from a combination of synoptic and basin observations based on whether the day was predominantly cloudy, or whether the O3 peak was in the north or south of the basin. O3-South days have weak synoptic forcing due to an anti-cyclone over the eastern Pacific. Strong solar heating leads to northerly flows in the basin and an evening shift due to a gap flow from the south-east. Peak ozone concentrations are in the convergence zone in the south of the city. Cold Surge days are associated with ''El Norte'' events, with strong surface northerlies bringing cold moist air and rain. Stable conditions lead to high concentrations of primary pollutants and peak ozone in the city center. O3-North days occur when the sub-tropical jet is closer to Mexico City. With strong westerlies aloft, the circulation pattern is the same as O3-South days except for a wind shift in the mid-afternoon leading to ozone peaks in the north of the city. This classification is proposed as a means of understanding pollutant transport in the Mexico City basin and as a basis for future meteorological and chemical analysis. Furthermore, model evaluation and design of policy recommendations will need to take into account the three episode types.


2005 ◽  
Vol 5 (8) ◽  
pp. 2267-2288 ◽  
Author(s):  
B. de Foy ◽  
E. Caetano ◽  
V. Magaña ◽  
A. Zitácuaro ◽  
B. Cárdenas ◽  
...  

Abstract. MCMA-2003 was a major field campaign investigating the atmospheric chemistry of the Mexico City Metropolitan Area (MCMA) in April of 2003. This paper describes the wind circulation patterns during the campaign both within the Mexico City basin and on the regional scale. ''Time roses'' are introduced to concisely analyze the diurnal wind patterns. Three episode types were identified that explain the conditions encountered: ''O3-South'', ''Cold Surge'' and ''O3-North''. These can be diagnosed from a combination of synoptic and basin observations based on whether the day was predominantly cloudy, or whether the O3 peak was in the north or south of the basin. O3-South days have weak synoptic forcing due to an anti-cyclone over the eastern Pacific. Strong solar heating leads to northerly flows in the basin and an evening shift due to a gap flow from the south-east. Peak ozone concentrations are in the convergence zone in the south of the city. Cold Surge days are associated with ''El Norte'' events, with strong surface northerlies bringing cold moist air and rain. Stable conditions lead to high concentrations of primary pollutants and peak ozone in the city center. O3-North days occur when the sub-tropical jet is closer to Mexico City. With strong westerlies aloft, the circulation pattern is the same as O3-South days except for a wind shift in the mid-afternoon leading to ozone peaks in the north of the city. This classification is proposed as a means of understanding pollutant transport in the Mexico City basin and as a basis for future meteorological and chemical analysis. Furthermore, model evaluation and design of policy recommendations will need to take into account the three episode types.


2014 ◽  
Vol 32 (4) ◽  
pp. 401-420 ◽  
Author(s):  
G. Poljak ◽  
M. T. Prtenjak ◽  
M. Kvakić ◽  
N. Strelec Mahović ◽  
K. Babić

Abstract. The northeastern (NE) Adriatic in the northern Mediterranean is the area with (i) the highest frequency of thunderstorms in Croatia, and (ii) frequent appearances of sea breeze (SB) along the coast. This study investigates the impact of the combined large-scale wind (associated with particular synoptic conditions) and the SB on the moist convection development over the NE Adriatic. The four selected cases were (i) chosen on the basis of a daytime moist convection; (ii) supplemented by one of the dominant large-scale winds with seaward (NE, NW) and landward (SW, SE) directions and (iii) simulated by WRF numerical model. The near-surface wind patterns consisted of SBs along the coastline, generated a narrow eastward-moving convergence zone (CZ) along the area if the large-scale wind was less than 9 m s−1 (below 500 hPa). Apart from the low-level CZ, the advection of large-scale wind influenced the lifetime and movement of the initial Cb cells. While the local front collision with the NE wind advection caused the thunderstorm to propagate southward, the CZ and fronts interaction determined the afternoon northwestward storm movement against the NW large-scale wind. Due to particular synoptic background, the thunderstorm event in SE case was the shortest with only a minor impact on the SB. While the origins and locations of storm cells were completely controlled by the low-level CZ and the upward advection of low-level moisture at the SB front, the most typical convective case with SW warm-wet wind only partially supported the SB–Cb interaction.


2019 ◽  
Vol 58 (4) ◽  
pp. 853-874 ◽  
Author(s):  
Marcela Ulate ◽  
Qing Wang ◽  
Tracy Haack ◽  
Teddy Holt ◽  
Denny P. Alappattu

AbstractIn this study, we use observational and numerical model data from the Coupled Air Sea Processes and Electromagnetic Ducting Research (CASPER) field campaign to describe the mean refractive conditions offshore Duck, North Carolina. The U.S. Navy operational numerical weather prediction model known as the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) performed well forecasting large-scale conditions during the experiment, with an observed warm bias in SST and cold and dry biases in temperature and humidity in the lowest 2000 m. In general, COAMPS underpredicted the number of ducts, and they were weaker and at lower height than those seen in observations. It was found that there is a noticeable diurnal evolution of the ducts, more over land than over the ocean. Ducts were found to be more frequent over land but overall were stronger and deeper over the ocean. Also, the evaporative duct height increases as one moves offshore. A case study was chosen to describe the electromagnetic properties under different synoptic conditions. In this case the continental atmospheric boundary layer dominates and interacts with the marine atmospheric boundary layer. As a result, the latter moves around 80 km offshore and then back inland after 2 h.


2013 ◽  
pp. 116-123
Author(s):  
Claire Bompaire-Evesque

This article is a inquiry about how Barrès (1862-1923) handles the religious rite of pilgrimage. Barrès stages in his writings three successive forms of pilgrimage, revealing what is sacred to him at different times. The pilgrimage to a museum or to the birthplace of an artist is typical for the egotism and the humanism of the young Barrès, expressed in the Cult of the Self (1888-1891). After his conversion to nationalism, Barrès tries to unite the sons of France and to instill in them a solemn reverence for “the earth and the dead” ; for that purpose he encourages in French Amities (1903) pilgrimages to historical places of national importance (battlefields; birthplace of Joan of Arc), building what Nora later called the Realms of Memory. The third stage of Barrès’ intellectual evolution is exemplified by The Sacred Hill (1913). In this book the writer celebrates the places where “the Spirit blows”, and proves open to a large scale of spiritual forces, reaching back to paganism and forward to integrative syncretism, which aims at unifying “the entire realm of the sacred”.


Author(s):  
Na Li ◽  
Baofeng Jiao ◽  
Lingkun Ran ◽  
Zongting Gao ◽  
Shouting Gao

AbstractWe investigated the influence of upstream terrain on the formation of a cold frontal snowband in Northeast China. We conducted numerical sensitivity experiments that gradually removed the upstream terrain and compared the results with a control experiment. Our results indicate a clear negative effect of upstream terrain on the formation of snowbands, especially over large-scale terrain. By thoroughly examining the ingredients necessary for snowfall (instability, lifting and moisture), we found that the release of mid-level conditional instability, followed by the release of low-level or near surface instabilities (inertial instability, conditional instability or conditional symmetrical instability), contributed to formation of the snowband in both experiments. The lifting required for the release of these instabilities was mainly a result of frontogenetic forcing and upper gravity waves. However, the snowband in the control experiment developed later and was weaker than that in the experiment without upstream terrain. Two factors contributed to this negative topographic effect: (1) the mountain gravity waves over the upstream terrain, which perturbed the frontogenetic circulation by rapidly changing the vertical motion and therefore did not favor the release of instabilities in the absence of persistent ascending motion; and (2) the decrease in the supply of moisture as a result of blocking of the upstream terrain, which changed both the moisture and instability structures leeward of the mountains. A conceptual model is presented that shows the effects of the instabilities and lifting on the development of cold frontal snowbands in downstream mountains.


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
S. J. Eder ◽  
P. G. Grützmacher ◽  
M. Rodríguez Ripoll ◽  
J. F. Belak

Abstract Depending on the mechanical and thermal energy introduced to a dry sliding interface, the near-surface regions of the mated bodies may undergo plastic deformation. In this work, we use large-scale molecular dynamics simulations to generate “differential computational orientation tomographs” (dCOT) and thus highlight changes to the microstructure near tribological FCC alloy surfaces, allowing us to detect subtle differences in lattice orientation and small distances in grain boundary migration. The analysis approach compares computationally generated orientation tomographs with their undeformed counterparts via a simple image analysis filter. We use our visualization method to discuss the acting microstructural mechanisms in a load- and time-resolved fashion, focusing on sliding conditions that lead to twinning, partial lattice rotation, and grain boundary-dominated processes. Extracting and laterally averaging the color saturation value of the generated tomographs allows us to produce quantitative time- and depth-resolved maps that give a good overview of the progress and severity of near-surface deformation. Corresponding maps of the lateral standard deviation in the color saturation show evidence of homogenization processes occurring in the tribologically loaded microstructure, frequently leading to the formation of a well-defined separation between deformed and undeformed regions. When integrated into a computational materials engineering framework, our approach could help optimize material design for tribological and other deformation problems. Graphic Abstract .


Sign in / Sign up

Export Citation Format

Share Document