Mean Offshore Refractive Conditions during the CASPER East Field Campaign

2019 ◽  
Vol 58 (4) ◽  
pp. 853-874 ◽  
Author(s):  
Marcela Ulate ◽  
Qing Wang ◽  
Tracy Haack ◽  
Teddy Holt ◽  
Denny P. Alappattu

AbstractIn this study, we use observational and numerical model data from the Coupled Air Sea Processes and Electromagnetic Ducting Research (CASPER) field campaign to describe the mean refractive conditions offshore Duck, North Carolina. The U.S. Navy operational numerical weather prediction model known as the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) performed well forecasting large-scale conditions during the experiment, with an observed warm bias in SST and cold and dry biases in temperature and humidity in the lowest 2000 m. In general, COAMPS underpredicted the number of ducts, and they were weaker and at lower height than those seen in observations. It was found that there is a noticeable diurnal evolution of the ducts, more over land than over the ocean. Ducts were found to be more frequent over land but overall were stronger and deeper over the ocean. Also, the evaporative duct height increases as one moves offshore. A case study was chosen to describe the electromagnetic properties under different synoptic conditions. In this case the continental atmospheric boundary layer dominates and interacts with the marine atmospheric boundary layer. As a result, the latter moves around 80 km offshore and then back inland after 2 h.

2020 ◽  
Vol 148 (8) ◽  
pp. 3341-3359
Author(s):  
X. Zheng ◽  
S. A. Klein ◽  
V. P. Ghate ◽  
S. Santos ◽  
J. McGibbon ◽  
...  

Abstract This paper presents a process-oriented evaluation of precipitating stratocumulus and its transition to cumulus in version 1 of the Energy Exascale Earth System Model (E3SMv1) using comprehensive case-study observations from a field campaign of the Atmospheric Radiation Measurement program (ARM). The E3SMv1 single-column model (SCM) of the marine boundary layer and its low clouds and precipitation are compared to observations including subcloud drizzle retrievals from a combination of Doppler radar and lidar backscatter measurements. The SCM is also compared to a large-eddy simulation (LES) of the same case. The combination of advanced remote sensing observations and LES is a powerful framework to evaluate the physical parameterizations of large-scale models. Given the observed large-scale environment, the E3SMv1 SCM realistically represents the evolution of clouds and boundary layer structure during the stratocumulus-to-cumulus transition. The model well simulates the liquid water path and its diurnal cycle in the stratocumulus period as well as the two-layer vertical thermodynamic structure and lower cloud fraction in the transition period. E3SMv1’s success in simulating the cloud in the stratocumulus period permitted examination of its precipitation processes. Here problems were identified with E3SMv1 producing an unrealistically small subcloud precipitation fraction, an unrealistic double peak in the vertical profiles of precipitation mass, and drizzle that evaporates too close to the surface. Further model diagnostics determined that these unrealistic characteristics resulted from an overly long microphysics time step and an unrealistic parameterization of the precipitation fraction. These results imply that careful consideration of these issues is needed in order to better simulate precipitation processes in marine stratocumulus.


2020 ◽  
Author(s):  
Marta Wenta ◽  
Agnieszka Herman

<p>In consequence of sea ice fragmentation in winter a range of physical processes take place between the sea/sea ice and the atmospheric boundary layer (ABL). Most of them occur on the level of individual ice floes and cracks and thus cannot be directly resolved by numerical weather prediction (NWP) models.  Parametrizations of those processes aim to describe their overall effect on grid scale values, given the grid scale variables. However, as many of the processes taking place during winter sea ice fragmentation remain largely unrecognized they cannot be incorporated into the NWP models. </p><p>The aim of the presented study is to determine whether the floe size distribution (FSD) has an effect on the ABL. Our previous research (Wenta, Herman 2018 and 2019) indicates that FSD might determine the intensity and spatial arrangement of convection and heat fluxes. A coefficient has been proposed for the correction of moisture heat flux, which can be incorporated into the NWP models. However, this research is based entirely on idealized model simulations and requires further modelling and observations based studies.</p><p>In order to address this shortcoming, a field campaign is going to take place in the Bay of Bothnia in March 2020. Our goal is to create a 3D view of the atmosphere above fragmented sea and verify whether the processes and effects we found in the modeling results take similar form in real situations. Measurements results will be useful in the validation of our numerical modelling studies and will provide a unique dataset about the sea-ice-atmosphere interactions in the Bay of Bothnia area. Considering a significant decreasing trend in winter sea ice extent in the Baltic Sea it might contribute to our understanding of the role of ice in the local weather patterns. The field campaign is going to be complemented by numerical modelling with full version of Weather Research and Forecasting (WRF) model adjusted to the conditions over the Bay of Bothnia. </p><p>Combined together - the results of our previous modelling studies and the results from the Bay of Bothnia field campaign, may considerably increase our knowledge about the surface-atmosphere coupling in the event of winter sea ice fragmentation.</p>


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 873
Author(s):  
Yakob Umer ◽  
Janneke Ettema ◽  
Victor Jetten ◽  
Gert-Jan Steeneveld ◽  
Reinder Ronda

Simulating high-intensity rainfall events that trigger local floods using a Numerical Weather Prediction model is challenging as rain-bearing systems are highly complex and localized. In this study, we analyze the performance of the Weather Research and Forecasting (WRF) model’s capability in simulating a high-intensity rainfall event using a variety of parameterization combinations over the Kampala catchment, Uganda. The study uses the high-intensity rainfall event that caused the local flood hazard on 25 June 2012 as a case study. The model capability to simulate the high-intensity rainfall event is performed for 24 simulations with a different combination of eight microphysics (MP), four cumulus (CP), and three planetary boundary layer (PBL) schemes. The model results are evaluated in terms of the total 24-h rainfall amount and its temporal and spatial distributions over the Kampala catchment using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) analysis. Rainfall observations from two gauging stations and the CHIRPS satellite product served as benchmark. Based on the TOPSIS analysis, we find that the most successful combination consists of complex microphysics such as the Morrison 2-moment scheme combined with Grell-Freitas (GF) and ACM2 PBL with a good TOPSIS score. However, the WRF performance to simulate a high-intensity rainfall event that has triggered the local flood in parts of the catchment seems weak (i.e., 0.5, where the ideal score is 1). Although there is high spatial variability of the event with the high-intensity rainfall event triggering the localized floods simulated only in a few pockets of the catchment, it is remarkable to see that WRF is capable of producing this kind of event in the neighborhood of Kampala. This study confirms that the capability of the WRF model in producing high-intensity tropical rain events depends on the proper choice of parametrization combinations.


2015 ◽  
Vol 142 (694) ◽  
pp. 211-223 ◽  
Author(s):  
William Thurston ◽  
Robert J. B. Fawcett ◽  
Kevin J. Tory ◽  
Jeffrey D. Kepert

2021 ◽  
Author(s):  
Pierre-Etienne Brilouet ◽  
Marie Lothon ◽  
Sandrine Bony

<p>Tradewind clouds can exhibit a wide diversity of mesoscale organizations, and the turbulence of marine atmospheric boundary layer (MABL) can exhibit coherent structures and mesoscale circulations. One of the objectives of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field experiment was to better understand the tight interplay between the mesoscale organization of clouds, boundary-layer processes, and the large-scale environment.</p><p>During the experiment, that took place East of Barbados over the Western Tropical Atlantic Ocean in Jan-Feb 2020, the French ATR-42 research aircraft was devoted to the characterization of the cloud amount and of the subcoud layer structure. <span>During its 17 research flights, </span><span>it</span> <span>sampled a </span><span>large diversity of large scale conditions and </span><span>cloud patterns</span><span>. </span>Multiple sensors onboard t<span>he aircraft measure</span><span>d</span> <span>high-frequency </span><span>fluctuations of potential temperature, water vapour mixing ratio and wind , allowing </span><span>for </span><span>an extensive characterization </span><span> of</span><span> the turbulence </span><span>within</span><span> the subcloud layer. </span> <span>A </span><span>quality-controled and calibrated turbulence data</span><span>set</span><span> was produced </span><span>on the basis of these measurements</span><span>, which is now </span><span> available on the EUREC4A AERIS data portal.</span></p><p><span>The </span><span>MABL </span><span>turbulent </span><span>structure i</span><span>s</span><span> studied </span><span>using this dataset, </span><span>through a spectral analysis </span><span>of the vertical velocity</span><span>. Vertical profiles of characteristic length scales reveal a non-isotropic structure with a stretching of the eddies along the mean wind. The organization strength of the turbulent field is also explored </span><span>by defining</span><span> a diagnostic based on the shape of the vertical velocity spectrum. </span><span>The </span><span>structure and the degree of organization of the </span><span>subcloud layer </span><span>are</span><span> characterized for </span><span> different type</span><span>s</span><span> of mesoscale </span><span>convective </span><span>pattern </span><span>and </span><span>as a function of</span><span> the large-scale environment, </span><span>including</span> <span>near-</span><span>surface wind </span><span>and</span> <span>lower-</span><span>tropospheric</span><span> stability conditions.</span></p><p> </p>


Author(s):  
Matthew T. Bray ◽  
David D. Turner ◽  
Gijs de Boer

AbstractDespite a need for accurate weather forecasts for societal and economic interests in the U.S. Arctic, thorough evaluations of operational numerical weather prediction in the region have been limited. In particular, the Rapid Refresh Model (RAP), which plays a key role in short-term forecasting and decision making, has seen very limited assessment in northern Alaska, with most evaluation efforts focused on lower latitudes. In the present study, we verify forecasts from version 4 of the RAP against radiosonde, surface meteorological, and radiative flux observations from two Arctic sites on the northern Alaskan coastline, with a focus on boundary-layer thermodynamic and dynamic biases, model representation of surface inversions, and cloud characteristics. We find persistent seasonal thermodynamic biases near the surface that vary with wind direction, and may be related to the RAP’s handling of sea ice and ocean interactions. These biases seem to have diminished in the latest version of the RAP (version 5), which includes refined handling of sea ice, among other improvements. In addition, we find that despite capturing boundary-layer temperature profiles well overall, the RAP struggles to consistently represent strong, shallow surface inversions. Further, while the RAP seems to forecast the presence of clouds accurately in most cases, there are errors in the simulated characteristics of these clouds, which we hypothesize may be related to the RAP’s treatment of mixed-phase clouds.


2019 ◽  
Vol 11 (13) ◽  
pp. 1590 ◽  
Author(s):  
Ruijun Dang ◽  
Yi Yang ◽  
Xiao-Ming Hu ◽  
Zhiting Wang ◽  
Shuwen Zhang

The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the accurate estimation of that is critically important for boundary layer related studies, which include air quality forecasts and numerical weather prediction. Aerosol lidar is a powerful remote sensing instrument frequently used to retrieve the ABLH through detecting the vertical distributions of aerosol concentration. Presently available methods for ABLH determination from aerosol lidar are summarized in this review, including a lot of classical methodologies as well as some improved versions of them. Some new recently developed methods applying advanced techniques such as image edge detection, as well as some new methods based on multi-wavelength lidar systems, are also summarized. Although a lot of techniques have been proposed and have already given reasonable results in several studies, it is impossible to recommend a technique which is suitable in all atmospheric scenarios. More accurate instantaneous ABLH from robust techniques is required, which can be used to estimate or improve the boundary layer parameterization in the numerical model, or maybe possible to be assimilated into the weather and environment models to improve the simulation or forecast of weather and air quality in the future.


Sign in / Sign up

Export Citation Format

Share Document