scholarly journals Implementing growth and sedimentation of NAT particles in a global Eulerian model

2004 ◽  
Vol 4 (3) ◽  
pp. 3089-3126
Author(s):  
M. M. P. van den Broek ◽  
J. E. Williams ◽  
A. Bregman

Abstract. Here we present a concise and efficient algorithm to mimic the growth and sedimentation of Nitric Acid Trihydate (NAT) particles in the polar vortex in a state-of-the-art 3D chemistry transport model. The particle growth and sedimentation are calculated using the microphysical formulation of Carslaw et al. (2002). Once formed, NAT particles are transported in the model as tracers in the form of size-segregated quantities. Two different approaches were adopted for this purpose: one assuming a fixed particle number density ("FixedDens") and the other assuming a discrete set of particle diameter values ("FixedRad"). Simulations were performed for three separate 10-day periods during the 1999–2000 Arctic winter and compared to the results of an existing Lagrangian model study, which uses similar microphysics in a computationally more expensive method for the simulation of NAT particle growth. The resulting maximum particle sizes for both our approaches compare favourably at 96 hPa with those obtained from this previous model study, and also in-situ observations related to the size of large NAT particles. Comparisons were made with a standard equilibrium approach and the differences in the redistribution of HNO3 were found to be substantial. For both approaches the performance of the algorithm is rather insensitive to both the number of size bins and the shape of the size distribution. However, the percentage of HNO3 sequestered into NAT is critically dependent on the total number density of particles prescribed for each size bin.

2004 ◽  
Vol 4 (7) ◽  
pp. 1869-1883 ◽  
Author(s):  
M. M. P. van den Broek ◽  
J. E. Williams ◽  
A. Bregman

Abstract. Here we present a concise and efficient algorithm to mimic the growth and sedimentation of Nitric Acid Trihydate (NAT) particles in the polar vortex in a state-of-the-art 3D chemistry transport model. The particle growth and sedimentation are calculated using the microphysical formulation of Carslaw et al. (2002). Once formed, NAT particles are transported in the model as tracers in the form of size-segregated quantities or size bins. Two different approaches were adopted for this purpose: one assuming a fixed particle number density ("FixedDens") and the other assuming a discrete set of particle diameter values ("FixedRad"). Simulations were performed for three separate 10-day periods during the 1999-2000 Arctic winter and compared to the results of an existing Lagrangian model study, which uses similar microphysics in a computationally more expensive method for the simulation of NAT particle growth. The resulting particle sizes for both our approaches compare favourably at 430K with those obtained from this previous model study, and also in-situ observations related to the size of large NAT particles. The particle growth is faster for "FixedDens" resulting in a difference in (de)nitrification by a factor of ~2 for all three simulation periods. Comparisons were made with a standard equilibrium approach and the differences in the redistribution of HNO3 were found to be substantial. For both approaches the performance of the algorithm is rather insensitive to both the number of size bins and the shape of the size distribution, and show a weak dependence on the prescribed total particle number density during the coldest period. This results in an increase of 7% for the "FixedRad" approach and 17% for the "FixedDens" approach when increasing the total particle number density by a factor of 2.5.


2020 ◽  
Vol 4 (4) ◽  
pp. 59
Author(s):  
Shi Chen ◽  
Hanqing Liu ◽  
Zhiguo Sun ◽  
Hongyong Xie

This paper has established a two-dimensional (2D) mathematical model for the generation, growth, and deposition of cigarette total particulate matter (TPM) in the smoldering state. The model has covered the chemical reactions and mass transfer as well as the mechanism of generation, flow, and condensation of particulate matter inside a burning cigarette. Cigarette smoke was generated by puffing under a constant pressure, and the pressure of the filter outlet was −274 Pa. The peak of the concentration of particulate matter was spatially overlapped with the peaks of pyrolysis and oxidation. Pertaining to the cross section of the cigarette at the same axial position, the peak of the diameter of particulate matter along the radial distribution first appeared in the zone near the edge of the cigarette cross section, and then gradually moved to the center of the cigarette with the cigarette smoke moving away from the combustion cone. The maximum number density of particulate matter calculated by the 2D mathematical model at the same axial position of the cigarette and the corresponding particle diameter, as well as the filtration efficiency of the filter rod, are in good accordance with the experimental data reported in previous studies.


Author(s):  
Yasuteru Sibamoto ◽  
Haomin Sun ◽  
Yoshiyasu Hirose ◽  
Yutaka Kukita

Abstract The dependence of pool scrubbing performance on particle number density is studied through numerical simulation of experimental results. The DF values obtained from the authors’ experiments (Sun et al., Sci. Technol. Nucl. Inst., Article ID 1743982, 2019) indicate a sharp decrease with an increase in the inlet particle number density beyond 1011/m3. The mechanisms underlying such dependence is yet to be studied. In this paper, a simple model is developed to study the factors affecting the experimentally observed dependence of DF. The test results suggest that the condensational growth of particles plays an essential role in the inertial capture. The vapor condensation on the particles has an effect to deplete the vapor supersaturation in the bubble by both lowering the vapor concentration and raising the temperature. This effect will become important at high particle number densities. The bubble mass and energy balance is calculated to derive the particle growth and the inertial DF as a function of the bubble rise distance through the pool water. The balance is assumed to be quasi-steady, and the vapor concentration and the temperature to be uniform in the bubble. It is shown that the model reproduces the tendency observed in the experimental DF. The model predicts that the degree of supersaturation is affected when particle concentration exceeds 1011/m3, curbing the condensational growth of particles, and thereby retarding the inertial capture.


2013 ◽  
Vol 13 (21) ◽  
pp. 10859-10871 ◽  
Author(s):  
C. Kalicinsky ◽  
J.-U. Grooß ◽  
G. Günther ◽  
J. Ungermann ◽  
J. Blank ◽  
...  

Abstract. The CRISTA-NF (Cryogenic Infrared Spectrometers and Telescope for the Atmosphere – New Frontiers) instrument is an airborne infrared limb sounder operated aboard the Russian research aircraft M55-Geophysica. The instrument successfully participated in a large Arctic aircraft campaign within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) project in Kiruna (Sweden) from January to March 2010. This paper concentrates on the measurements taken during one flight of the campaign, which took place on 2 March in the vicinity of the polar vortex. We present two-dimensional cross-sections of derived volume mixing ratios for the trace gases CFC-11, O3, and ClONO2 with an unprecedented vertical resolution of about 500 to 600 m for a large part of the observed altitude range (≈ 6–19 km) and a dense horizontal sampling along flight direction of ≈ 15 km. The trace gas distributions show several structures, for example a part of the polar vortex and a vortex filament, which can be identified by means of O3–CFC-11 tracer–tracer correlations. The observations made during this flight are interpreted using the chemistry and transport model CLaMS (Chemical Lagrangian Model of the Stratosphere). Comparisons of the observations with the model results are used to assess the performance of the model with respect to advection, mixing, and the chemistry in the polar vortex. These comparisons confirm the capability of CLaMS to reproduce even very small-scale structures in the atmosphere, which partly have a vertical extent of only 1 km. Based on the good agreement between simulation and observation, we use artificial (passive) tracers, which represent different air mass origins (e.g. vortex, tropics), to further analyse the CRISTA-NF observations in terms of the composition of air mass origins. These passive tracers clearly illustrate the observation of filamentary structures that include tropical air masses. A characteristic of the Arctic winter 2009/10 was a sudden stratospheric warming in December that led to a split of the polar vortex. The vortex re-established at the end of December. Our passive tracer simulations suggest that large parts of the re-established vortex consisted to about 45% of high- and mid-latitude air.


2010 ◽  
Vol 10 (12) ◽  
pp. 5573-5592 ◽  
Author(s):  
S. Borrmann ◽  
D. Kunkel ◽  
R. Weigel ◽  
A. Minikin ◽  
T. Deshler ◽  
...  

Abstract. Processes occurring in the tropical upper troposphere (UT), the Tropical Transition Layer (TTL), and the lower stratosphere (LS) are of importance for the global climate, for stratospheric dynamics and air chemistry, and for their influence on the global distribution of water vapour, trace gases and aerosols. In this contribution we present aerosol and trace gas (in-situ) measurements from the tropical UT/LS over Southern Brazil, Northern Australia, and West Africa. The instruments were operated on board of the Russian high altitude research aircraft M-55 "Geophysica" and the DLR Falcon-20 during the campaigns TROCCINOX (Araçatuba, Brazil, February 2005), SCOUT-O3 (Darwin, Australia, December 2005), and SCOUT-AMMA (Ouagadougou, Burkina Faso, August 2006). The data cover submicron particle number densities and volatility from the COndensation PArticle counting System (COPAS), as well as relevant trace gases like N2O, ozone, and CO. We use these trace gas measurements to place the aerosol data into a broader atmospheric context. Also a juxtaposition of the submicron particle data with previous measurements over Costa Rica and other tropical locations between 1999 and 2007 (NASA DC-8 and NASA WB-57F) is provided. The submicron particle number densities, as a function of altitude, were found to be remarkably constant in the tropical UT/LS altitude band for the two decades after 1987. Thus, a parameterisation suitable for models can be extracted from these measurements. Compared to the average levels in the period between 1987 and 2007 a slight increase of particle abundances was found for 2005/2006 at altitudes with potential temperatures, Θ, above 430 K. The origins of this increase are unknown except for increases measured during SCOUT-AMMA. Here the eruption of the Soufrière Hills volcano in the Caribbean caused elevated particle mixing ratios. The vertical profiles from Northern hemispheric mid-latitudes between 1999 and 2006 also are compact enough to derive a parameterisation. The tropical profiles all show a broad maximum of particle mixing ratios (between Θ≈340 K and 390 K) which extends from below the TTL to above the thermal tropopause. Thus these particles are a "reservoir" for vertical transport into the stratosphere. The ratio of non-volatile particle number density to total particle number density was also measured by COPAS. The vertical profiles of this ratio have a maximum of 50% above 370 K over Australia and West Africa and a pronounced minimum directly below. Without detailed chemical composition measurements a reason for the increase of non-volatile particle fractions cannot yet be given. However, half of the particles from the tropical "reservoir" contain compounds other than sulphuric acid and water. Correlations of the measured aerosol mixing ratios with N2O and ozone exhibit compact relationships for the tropical data from SCOUT-AMMA, TROCCINOX, and SCOUT-O3. Correlations with CO are more scattered probably because of the connection to different pollution source regions. We provide additional data from the long distance transfer flights to the campaign sites in Brazil, Australia, and West-Africa. These were executed during a time window of 17 months within a period of relative volcanic quiescence. Thus the data represent a "snapshot picture" documenting the status of a significant part of the global UT/LS fine aerosol at low concentration levels 15 years after the last major (i.e., the 1991 Mount Pinatubo) eruption. The corresponding latitudinal distributions of the measured particle number densities are presented in this paper to provide data of the UT/LS background aerosol for modelling purposes.


2011 ◽  
Vol 11 (1) ◽  
pp. 1429-1455 ◽  
Author(s):  
S.-M. Salmi ◽  
P. T. Verronen ◽  
L. Thölix ◽  
E. Kyrölä ◽  
L. Backman ◽  
...  

Abstract. We use the 3-D FinROSE chemistry transport model (CTM) and ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations to study the connection between atmospheric dynamics and NOx descent during early 2009 in the northern polar region. We force the model NOx at 80 km poleward of 60° N with ACE-FTS observations and then compare the model results with observations at lower altitudes. Low geomagnetic indices indicate absence of local NOx production in early 2009, which gives a good opportunity to study the effects of atmospheric transport on polar NOx. No in-situ production of NOx by energetic particle precipitation is therefore included. This is the first model study using ECMWF (The European Centre for Medium-Range Weather Forecasts) data up to 80 km and simulating the exceptional winter of 2009 with one of the strongest major sudden stratospheric warmings (SSW). The model results show a strong NOx descent in February–March 2009 from the upper mesosphere to the stratosphere after the major SSW. Both observations and model results suggest an increase of NOx to 150–200 ppb (i.e. by factor of 50) at 65 km due to the descent following the SSW. The model, however, underestimates the amount of NOx around 55 km by 40–60 ppb. The results also show that the chemical loss of NOx was insignificant i.e. NOx was mainly controlled by the dynamics. Both ACE-FTS observations and FinROSE show a decrease of ozone of 20–30% at 30–50 km after mid-February to mid-March. However, these changes are not related to the NOx descent, but are due to activation of the halogen chemistry.


2021 ◽  
Author(s):  
Jens-Uwe Grooß ◽  
Rolf Müller

<p>In Arctic winter/spring 2019/2020, the stratospheric temperatures  were exceptionally low until early April and the polar vortex was  very stable.  As a consequence, significant chemical ozone depletion  occurred in Northern polar regions in spring 2020.  Here, we present  simulations by the Chemical Lagrangian Model of the Stratosphere  (CLaMS) that address the development of chlorine compounds and  ozone in the polar stratosphere in 2020.  The simulation reproduces  relevant observations of ozone and chlorine compounds, as shown by  comparisons with data from Microwave Limb Sounder (MLS), Atmospheric  Chemistry Experiment - Fourier Transform Spectrometer (ACE-FTS),  in-situ ozone sondes and the Ozone Monitoring Instrument (OMI).  Although the concentration of chlorine and bromine compounds in the  polar stratosphere has decreased by more than 10% compared to the  peak values around the year 2000, the meteorological conditions in  winter/spring 2019/2020 caused an unprecedented ozone depletion. The  simulated lowest ozone mixing ratio was around 0.05 ppmv and the  calculated partial ozone column depletion in the vortex core in the  lower stratosphere reached 141 Dobson Units between 350 and 600 K  potential temperature, which is more than the  loss in the years 2011 and 2016 which until 2020 had seen the  largest Arctic ozone depletion on record.</p>


2021 ◽  
Author(s):  
Chenxi Qiu ◽  
Felix Ploeger ◽  
Jens-Uwe Grooß ◽  
Marc von Hobe

<p>Carbonyl sulfide (OCS or COS) is the longest lived and the most abundant reduced sulfur gas in the atmosphere. As chemical loss of OCS in the troposphere is slow, it can reach the stratosphere, where it is  photochemically oxidized and converted to stratospheric sulfate aerosol, being the largest source thereof in times of volcanic quiescence. Chemistry transport models show that OCS conversion occurs mainly in the ‘tropical pipe’ region, while along the lower branch of Brewer-Dobson circulation (BDC), OCS is passively transported without significant chemical loss. The OCS depleted air is transported along the upper branch of BDC and descends again at high latitudes. Using the distinct characteristics of  ‘age of air’ in the upper and lower branches of the BDC, this picture of OCS transport and especially the role of the ‘tropical pipe’ as the main region of OCS conversion can be supported by looking at the relationship between age spectra and OCS mixing ratios.</p><p>In this study, we will investigate the relation of OCS mixing ratios and mean age of air as well as mass fractions of air with different transit times using satellite-based measurements from MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) and ACE-FTS (Atmospheric Chemistry Experiment - infrared Fourier Transform Spectrometer), and age spectra of air from CLaMS (Chemical Lagrangian Model of the Stratosphere).</p><p>In addition to satellite data analysis, we will investigate the distribution of OCS in the UTLS (upper troposphere and lower stratosphere) region and its relation to the age spectra using high-resolution in-situ observations of OCS. This unique dataset was obtained during the SOUTHTRAC mission in autumn 2019 by AMICA (Airborne Mid-Infrared Cavity enhanced Absorption spectrometer) on board the HALO (High Altitude Long Range) research aircraft. Flights from the main  campaign base in Río Grande, Argentina (53.8S, 67.7W) covered a wide latitude range from 48° N to 70° S, even reaching the southern polar vortex where aged air masses having descended from high altitudes are typically found.</p><p>Our analysis of both satellite and in-situ data generally supports the established picture of OCS conversion in the ‘tropical pipe’.</p>


2013 ◽  
Vol 13 (8) ◽  
pp. 3909-3929 ◽  
Author(s):  
I. Wohltmann ◽  
T. Wegner ◽  
R. Müller ◽  
R. Lehmann ◽  
M. Rex ◽  
...  

Abstract. Stratospheric chemistry and denitrification are simulated for the Arctic winter 2009/2010 with the Lagrangian Chemistry and Transport Model ATLAS. A number of sensitivity runs is used to explore the impact of uncertainties in chlorine activation and denitrification on the model results. In particular, the efficiency of chlorine activation on different types of liquid aerosol versus activation on nitric acid trihydrate clouds is examined. Additionally, the impact of changes in reaction rate coefficients, in the particle number density of polar stratospheric clouds, in supersaturation, temperature or the extent of denitrification is investigated. Results are compared to satellite measurements of MLS and ACE-FTS and to in-situ measurements onboard the Geophysica aircraft during the RECONCILE measurement campaign. It is shown that even large changes in the underlying assumptions have only a small impact on the modelled ozone loss, even though they can cause considerable differences in chemical evolution of other species and in denitrification. Differences in column ozone between the sensitivity runs stay below 10% at the end of the winter. Chlorine activation on liquid aerosols alone is able to explain the observed magnitude and morphology of the mixing ratios of active chlorine, reservoir gases and ozone. This is even true for binary aerosols (no uptake of HNO3 from the gas-phase allowed in the model). Differences in chlorine activation between sensitivity runs are within 30%. Current estimates of nitric acid trihydrate (NAT) number density and supersaturation imply that, at least for this winter, NAT clouds play a relatively small role compared to liquid clouds in chlorine activation. The change between different reaction rate coefficients for liquid or solid clouds has only a minor impact on ozone loss and chlorine activation in our sensitivity runs.


2008 ◽  
Vol 8 (3) ◽  
pp. 565-578 ◽  
Author(s):  
J.-U. Grooß ◽  
R. Müller ◽  
P. Konopka ◽  
H.-M. Steinhorst ◽  
A. Engel ◽  
...  

Abstract. The Match method for the quantification of polar chemical ozone loss is investigated mainly with respect to the impact of the transport of air masses across the vortex edge. For the winter 2002/03, we show that significant transport across the vortex edge occurred and was simulated by the Chemical Lagrangian Model of the Stratosphere. In-situ observations of inert tracers and ozone from HAGAR on the Geophysica aircraft and balloon-borne sondes, and remote observations from MIPAS on the ENVISAT satellite were reproduced well by CLaMS. The model even reproduced a small vortex remnant that remained a distinct feature until June 2003 and was also observed in-situ by a balloon-borne whole air sampler. We use this CLaMS simulation to quantify the impact of transport across the vortex edge on ozone loss estimates from the Match method. We show that a time integration of the determined vortex average ozone loss rates, as performed in Match, results in a larger ozone loss than the polar vortex average ozone loss in CLaMS. The determination of the Match ozone loss rates is also influenced by the transport of air across the vortex edge. We use the model to investigate how the sampling of the ozone sondes on which Match is based represents the vortex average ozone loss rate. Both the time integration of ozone loss and the determination of ozone loss rates for Match are evaluated using the winter 2002/2003 CLaMS simulation. These impacts can explain the majority of the differences between CLaMS and Match column ozone loss. While the investigated effects somewhat reduce the apparent discrepancy in January ozone loss rates reported earlier, a distinct discrepancy between simulations and Match remains. However, its contribution to the accumulated ozone loss over the winter is not large.


Sign in / Sign up

Export Citation Format

Share Document