scholarly journals Effects of temporal resolution of input precipitation on the performance of hydrological forecasting

2011 ◽  
Vol 29 ◽  
pp. 21-25 ◽  
Author(s):  
F. Wetterhall ◽  
Y. He ◽  
H. Cloke ◽  
F. Pappenberger

Abstract. Flood prediction systems rely on good quality precipitation input data and forecasts to drive hydrological models. Most precipitation data comes from daily stations with a good spatial coverage. However, some flood events occur on sub-daily time scales and flood prediction systems could benefit from using models calibrated on the same time scale. This study compares precipitation data aggregated from hourly stations (HP) and data disaggregated from daily stations (DP) with 6-hourly forecasts from ECMWF over the time period 1 October 2006–31 December 2009. The HP and DP data sets were then used to calibrate two hydrological models, LISFLOOD-RR and HBV, and the latter was used in a flood case study. The HP scored better than the DP when evaluated against the forecast for lead times up to 4 days. However, this was not translated in the same way to the hydrological modelling, where the models gave similar scores for simulated runoff with the two datasets. The flood forecasting study showed that both datasets gave similar hit rates whereas the HP data set gave much smaller false alarm rates (FAR). This indicates that using sub-daily precipitation in the calibration and initiation of hydrological models can improve flood forecasting.

1998 ◽  
Vol 27 (3) ◽  
pp. 351-369 ◽  
Author(s):  
MICHAEL NOBLE ◽  
SIN YI CHEUNG ◽  
GEORGE SMITH

This article briefly reviews American and British literature on welfare dynamics and examines the concepts of welfare dependency and ‘dependency culture’ with particular reference to lone parents. Using UK benefit data sets, the welfare dynamics of lone mothers are examined to explore the extent to which they inform the debates. Evidence from Housing Benefits data show that even over a relatively short time period, there is significant turnover in the benefits-dependent lone parent population with movement in and out of income support as well as movement into other family structures. Younger lone parents and owner-occupiers tend to leave the data set while older lone parents and council tenants are most likely to stay. Some owner-occupier lone parents may be relatively well off and on income support for a relatively short time between separation and a financial settlement being reached. They may also represent a more highly educated and highly skilled group with easier access to the labour market than renters. Any policy moves paralleling those in the United States to time limit benefit will disproportionately affect older lone parents.


2015 ◽  
Vol 8 (2) ◽  
pp. 1787-1832 ◽  
Author(s):  
J. Heymann ◽  
M. Reuter ◽  
M. Hilker ◽  
M. Buchwitz ◽  
O. Schneising ◽  
...  

Abstract. Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO2) are required for carbon cycle and climate related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY onboard ENVISAT (March 2002–April 2012) and TANSO-FTS onboard GOSAT (launched in January 2009), to retrieve XCO2, the column-averaged dry-air mole fraction of CO2. BESD has been initially developed for SCIAMACHY XCO2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO2 product. GOSAT BESD XCO2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System (IFS). We describe the modifications of the BESD algorithm needed in order to retrieve XCO2 from GOSAT and present detailed comparisons with ground-based observations of XCO2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between the SCIAMACHY and the GOSAT XCO2. For example, we found a mean difference for daily averages of −0.60 ± 1.56 ppm (mean difference ± standard deviation) for GOSAT-SCIAMACHY (linear correlation coefficient r = 0.82), −0.34 ± 1.37 ppm (r = 0.86) for GOSAT-TCCON and 0.10 ± 1.79 ppm (r = 0.75) for SCIAMACHY-TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non-perfect collocation (±2 h, 10° × 10° around TCCON sites), i.e., the observed air masses are not exactly identical, but likely also due to a still non-perfect BESD retrieval algorithm, which will be continuously improved in the future. Our overarching goal is to generate a satellite-derived XCO2 data set appropriate for climate and carbon cycle research covering the longest possible time period. We therefore also plan to extend the existing SCIAMACHY and GOSAT data set discussed here by using also data from other missions (e.g., OCO-2, GOSAT-2, CarbonSat) in the future.


2017 ◽  
Vol 13 (1) ◽  
pp. 42-51 ◽  
Author(s):  
Daniela Štaffenová ◽  
Ján Rybárik ◽  
Miroslav Jakubčík

AbstractThe aim of experimental research in the area of exterior walls and windows suitable for wooden buildings was to build special pavilion laboratories. These laboratories are ideally isolated from the surrounding environment, airtight and controlled by the constant internal climate. The principle of experimental research is measuring and recording of required physical parameters (e.g. temperature or relative humidity). This is done in layers of experimental fragment sections in the direction from exterior to interior, as well as in critical places by stable interior and real exterior climatic conditions. The outputs are evaluations of experimental structures behaviour during the specified time period, possibly during the whole year by stable interior and real exterior boundary conditions. The main aim of this experimental research is processing of long-term measurements of experimental structures and the subsequent analysis. The next part of the research consists of collecting measurements obtained with assistance of the experimental detached weather station, analysis, evaluation for later setting up of reference data set for the research locality, from the point of view of its comparison to the data sets from Slovak Hydrometeorological Institute (SHMU) and to localities with similar climate conditions. Later on, the data sets could lead to recommendations for design of wooden buildings.


2014 ◽  
Vol 18 (6) ◽  
pp. 2343-2357 ◽  
Author(s):  
N. Wanders ◽  
D. Karssenberg ◽  
A. de Roo ◽  
S. M. de Jong ◽  
M. F. P. Bierkens

Abstract. We evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the prediction of the timing and height of the flood peak and low flows. EFAS is an operational flood forecasting system for Europe and uses a distributed hydrological model (LISFLOOD) for flood predictions with lead times of up to 10 days. For this study, satellite-derived soil moisture from ASCAT (Advanced SCATterometer), AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) and SMOS (Soil Moisture and Ocean Salinity) is assimilated into the LISFLOOD model for the Upper Danube Basin and results are compared to assimilation of discharge observations only. To assimilate soil moisture and discharge data into the hydrological model, an ensemble Kalman filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, is included to ensure increased performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation data set. Our results show that the accuracy of flood forecasts is increased when more discharge observations are assimilated; the mean absolute error (MAE) of the ensemble mean is reduced by 35%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of baseflows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the continuous ranked probability score (CRPS) shows a performance increase of 5–10% on average, compared to assimilation of discharge only. When soil moisture data is used, the timing errors in the flood predictions are decreased especially for shorter lead times and imminent floods can be forecasted with more skill. The number of false flood alerts is reduced when more observational data is assimilated into the system. The added values of the satellite data is largest when these observations are assimilated in combination with distributed discharge observations. These results show the potential of remotely sensed soil moisture observations to improve near-real time flood forecasting in large catchments.


Climate ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 116 ◽  
Author(s):  
Nir Y. Krakauer ◽  
Tarendra Lakhankar ◽  
Ghulam H. Dars

A large population relies on water input to the Indus basin, yet basinwide precipitation amounts and trends are not well quantified. Gridded precipitation data sets covering different time periods and based on either station observations, satellite remote sensing, or reanalysis were compared with available station observations and analyzed for basinwide precipitation trends. Compared to observations, some data sets tended to greatly underestimate precipitation, while others overestimate it. Additionally, the discrepancies between data set and station precipitation showed significant time trends in such cases, suggesting that the precipitation trends of those data sets were not consistent with station data. Among the data sets considered, the station-based Global Precipitation Climatology Centre (GPCC) gridded data set showed good agreement with observations in terms of mean amount, trend, and spatial and temporal pattern. GPCC had average precipitation of about 500 mm per year over the basin and an increase in mean precipitation of about 15% between 1891 and 2016. For the more recent past, since 1958 or 1979, no significant precipitation trend was seen. Among the remote sensing based data sets, the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) compared best to station observations and, though available for a shorter time period than station-based data sets such as GPCC, may be especially valuable for parts of the basin without station data. The reanalyses tended to have substantial biases in precipitation mean amount or trend relative to the station data. This assessment of precipitation data set quality and precipitation trends over the Indus basin may be helpful for water planning and management.


2019 ◽  
Vol 34 (9) ◽  
pp. 1369-1383 ◽  
Author(s):  
Dirk Diederen ◽  
Ye Liu

Abstract With the ongoing development of distributed hydrological models, flood risk analysis calls for synthetic, gridded precipitation data sets. The availability of large, coherent, gridded re-analysis data sets in combination with the increase in computational power, accommodates the development of new methodology to generate such synthetic data. We tracked moving precipitation fields and classified them using self-organising maps. For each class, we fitted a multivariate mixture model and generated a large set of synthetic, coherent descriptors, which we used to reconstruct moving synthetic precipitation fields. We introduced randomness in the original data set by replacing the observed precipitation fields in the original data set with the synthetic precipitation fields. The output is a continuous, gridded, hourly precipitation data set of a much longer duration, containing physically plausible and spatio-temporally coherent precipitation events. The proposed methodology implicitly provides an important improvement in the spatial coherence of precipitation extremes. We investigate the issue of unrealistic, sudden changes on the grid and demonstrate how a dynamic spatio-temporal generator can provide spatial smoothness in the probability distribution parameters and hence in the return level estimates.


1984 ◽  
Vol 15 (3) ◽  
pp. 155-161
Author(s):  
C. Firer

In this article the concept of never-buyers of consumer non-durables is discussed. The traditional Negative Binomial Distribution approach of Ehrenberg to the question is presented. Previously unpublished work carried out at the Graduate School of Business Administration, University of the Witwatersrand, is reviewed and hypotheses are put forward that the observed large zero cell in the purchase frequency distributions may be caused by the existence of a group of never-buyers of the product, or by the superimposition of at least two distinct buying populations, previously identified as brand-loyal and multibrand/brand-switching households. The results of the research aimed at testing the first hypothesis are presented here. Two carefully monitored data sets were modelled using zero-augmented Negative Binomial and Sichel distributions. The data were previously shown to exhibit the necessary mean households purchase/consumption stationarity. Individual brands in one data set (purchases of toilet soap) were shown to follow the predictions of the traditional theory - the proportion of non-buyers decreasing with time. In the second data set (consumption of packaged soup) the proportion of non-consumers of the brands fell towards zero as the length of the time period studied was increased, but at a rate faster than that predicted by the theory. The hypothesis of the existence of never-buyers/users of individual brands in these two product classes was therefore rejected.


2018 ◽  
Vol 22 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Daniele P. Viero

Abstract. Citizen science and crowdsourcing are gaining increasing attention among hydrologists. In a recent contribution, Mazzoleni et al. (2017) investigated the integration of crowdsourced data (CSD) into hydrological models to improve the accuracy of real-time flood forecasts. The authors used synthetic CSD (i.e. not actually measured), because real CSD were not available at the time of the study. In their work, which is a proof-of-concept study, Mazzoleni et al. (2017) showed that assimilation of CSD improves the overall model performance; the impact of irregular frequency of available CSD, and that of data uncertainty, were also deeply assessed. However, the use of synthetic CSD in conjunction with (semi-)distributed hydrological models deserves further discussion. As a result of equifinality, poor model identifiability, and deficiencies in model structure, internal states of (semi-)distributed models can hardly mimic the actual states of complex systems away from calibration points. Accordingly, the use of synthetic CSD that are drawn from model internal states under best-fit conditions can lead to overestimation of the effectiveness of CSD assimilation in improving flood prediction. Operational flood forecasting, which results in decisions of high societal value, requires robust knowledge of the model behaviour and an in-depth assessment of both model structure and forcing data. Additional guidelines are given that are useful for the a priori evaluation of CSD for real-time flood forecasting and, hopefully, for planning apt design strategies for both model calibration and collection of CSD.


Author(s):  
Pavan Kumar Yeditha ◽  
Maheswaran Rathinasamy ◽  
Sai Sumanth Neelamsetty ◽  
Biswa Bhattacharya ◽  
Ankit Agarwal

Abstract Rainfall–runoff models are valuable tools for flood forecasting, management of water resources, and drought warning. With the advancement in space technology, a plethora of satellite precipitation products (SPPs) are available publicly. However, the application of the satellite data for the data-driven rainfall–runoff model is emerging and requires careful investigation. In this work, two satellite rainfall data sets, namely Global Precipitation Measurement-Integrated Multi-Satellite Retrieval Product V6 (GPM-IMERG) and Climate Hazards Group Infrared Precipitation with Station (CHIRPS), are evaluated for the development of rainfall–runoff models and the prediction of 1-day ahead streamflow. The accuracy of the data from the SPPs is compared to the India Meteorological Department (IMD)-gridded precipitation data set. Detection metrics showed that for light rainfall (1–10 mm), the probability of detection (POD) value ranges between 0.67 and 0.75 and with an increasing rainfall range, i.e., medium and heavy rainfall (10–50 mm and >50 mm), the POD values ranged from 0.24 to 0.45. These results indicate that the satellite precipitation performs satisfactorily with reference to the IMD-gridded data set. Using the daily precipitation data of nearly two decades (2000–2018) over two river basins in India's Eastern part, artificial neural network, extreme learning machine (ELM), and long short-time memory (LSTM) models are developed for rainfall–runoff modelling. One-day ahead runoff prediction using the developed rainfall–runoff modelling confirmed that both the SPPs are sufficient to drive the rainfall–runoff models with a reasonable accuracy estimated using the Nash–Sutcliffe Efficiency coefficient, correlation coefficient, and the root-mean-squared error. In particular, the 1-day streamflow forecasts for the Vamsadhara river basin (VRB) using LSTM with GPM-IMERG inputs resulted in NSC values of 0.68 and 0.67, while ELM models for Mahanadhi river basin (MRB) with the same input resulted in NSC values of 0.86 and 0.87, respectively, during training and validation stages. At the same time, the LSTM model with CHIRPS inputs for the VRB resulted in NSC values of 0.68 and 0.65, and the ELM model with CHIRPS inputs for the MRB resulted in NSC values of 0.89 and 0.88, respectively, in training and validation stages. These results indicated that both the SPPs could reliably be used with LSTM and ELM models for rainfall–runoff modelling and streamflow prediction. This paper highlights that deep learning models, such as ELM and LSTM, with the GPM-IMERG products can lead to a new horizon to provide flood forecasting in flood-prone catchments.


10.2196/22624 ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. e22624 ◽  
Author(s):  
Ranganathan Chandrasekaran ◽  
Vikalp Mehta ◽  
Tejali Valkunde ◽  
Evangelos Moustakas

Background With restrictions on movement and stay-at-home orders in place due to the COVID-19 pandemic, social media platforms such as Twitter have become an outlet for users to express their concerns, opinions, and feelings about the pandemic. Individuals, health agencies, and governments are using Twitter to communicate about COVID-19. Objective The aims of this study were to examine key themes and topics of English-language COVID-19–related tweets posted by individuals and to explore the trends and variations in how the COVID-19–related tweets, key topics, and associated sentiments changed over a period of time from before to after the disease was declared a pandemic. Methods Building on the emergent stream of studies examining COVID-19–related tweets in English, we performed a temporal assessment covering the time period from January 1 to May 9, 2020, and examined variations in tweet topics and sentiment scores to uncover key trends. Combining data from two publicly available COVID-19 tweet data sets with those obtained in our own search, we compiled a data set of 13.9 million English-language COVID-19–related tweets posted by individuals. We use guided latent Dirichlet allocation (LDA) to infer themes and topics underlying the tweets, and we used VADER (Valence Aware Dictionary and sEntiment Reasoner) sentiment analysis to compute sentiment scores and examine weekly trends for 17 weeks. Results Topic modeling yielded 26 topics, which were grouped into 10 broader themes underlying the COVID-19–related tweets. Of the 13,937,906 examined tweets, 2,858,316 (20.51%) were about the impact of COVID-19 on the economy and markets, followed by spread and growth in cases (2,154,065, 15.45%), treatment and recovery (1,831,339, 13.14%), impact on the health care sector (1,588,499, 11.40%), and governments response (1,559,591, 11.19%). Average compound sentiment scores were found to be negative throughout the examined time period for the topics of spread and growth of cases, symptoms, racism, source of the outbreak, and political impact of COVID-19. In contrast, we saw a reversal of sentiments from negative to positive for prevention, impact on the economy and markets, government response, impact on the health care industry, and treatment and recovery. Conclusions Identification of dominant themes, topics, sentiments, and changing trends in tweets about the COVID-19 pandemic can help governments, health care agencies, and policy makers frame appropriate responses to prevent and control the spread of the pandemic.


Sign in / Sign up

Export Citation Format

Share Document