scholarly journals Atmosphere Density Measurements Using GPS Data from Rigid Falling Spheres

2017 ◽  
Author(s):  
Yunxia Yuan ◽  
Nickolay Ivchenko ◽  
Gunnar Tibert ◽  
Marin Stanev ◽  
Jonas Hedin ◽  
...  

Abstract. Atmospheric density profiles in the stratosphere and mesosphere are determined by means of low cost Global Positioning System (GPS) receivers on in situ rigid falling spheres released from a sounding rocket. Values below an altitude of 80 km are obtained. Aerodynamic drag relates atmospheric densities to other variables such as velocities of spheres, drag coefficients,and reference area.The densities are reconstructed by iterative solution. The calculated density is reasonably accurate, with deviation within 10 % with respect to the European Centre for Medium-range Weather Forecasts ( ECMWF) reference value. The atmospheric temperature and wind profiles are obtained as well, and compared to independent data.

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1020
Author(s):  
Yanqi Dong ◽  
Guangpeng Fan ◽  
Zhiwu Zhou ◽  
Jincheng Liu ◽  
Yongguo Wang ◽  
...  

The quantitative structure model (QSM) contains the branch geometry and attributes of the tree. AdQSM is a new, accurate, and detailed tree QSM. In this paper, an automatic modeling method based on AdQSM is developed, and a low-cost technical scheme of tree structure modeling is provided, so that AdQSM can be freely used by more people. First, we used two digital cameras to collect two-dimensional (2D) photos of trees and generated three-dimensional (3D) point clouds of plot and segmented individual tree from the plot point clouds. Then a new QSM-AdQSM was used to construct tree model from point clouds of 44 trees. Finally, to verify the effectiveness of our method, the diameter at breast height (DBH), tree height, and trunk volume were derived from the reconstructed tree model. These parameters extracted from AdQSM were compared with the reference values from forest inventory. For the DBH, the relative bias (rBias), root mean square error (RMSE), and coefficient of variation of root mean square error (rRMSE) were 4.26%, 1.93 cm, and 6.60%. For the tree height, the rBias, RMSE, and rRMSE were—10.86%, 1.67 m, and 12.34%. The determination coefficient (R2) of DBH and tree height estimated by AdQSM and the reference value were 0.94 and 0.86. We used the trunk volume calculated by the allometric equation as a reference value to test the accuracy of AdQSM. The trunk volume was estimated based on AdQSM, and its bias was 0.07066 m3, rBias was 18.73%, RMSE was 0.12369 m3, rRMSE was 32.78%. To better evaluate the accuracy of QSM’s reconstruction of the trunk volume, we compared AdQSM and TreeQSM in the same dataset. The bias of the trunk volume estimated based on TreeQSM was −0.05071 m3, and the rBias was −13.44%, RMSE was 0.13267 m3, rRMSE was 35.16%. At 95% confidence interval level, the concordance correlation coefficient (CCC = 0.77) of the agreement between the estimated tree trunk volume of AdQSM and the reference value was greater than that of TreeQSM (CCC = 0.60). The significance of this research is as follows: (1) The automatic modeling method based on AdQSM is developed, which expands the application scope of AdQSM; (2) provide low-cost photogrammetric point cloud as the input data of AdQSM; (3) explore the potential of AdQSM to reconstruct forest terrestrial photogrammetric point clouds.


2021 ◽  
Vol 13 (5) ◽  
pp. 878
Author(s):  
Christopher Cullingworth ◽  
Jan-Peter Muller

Despite the wealth of data produced by previous and current Earth Observation platforms feeding climate models, weather forecasts, disaster monitoring services and countless other applications, the public still lacks the ability to access a live, true colour, global view of our planet, and nudge them towards a realisation of its fragility. The ideas behind commercialization of Earth photography from space has long been dominated by the analytical value of the imagery. What specific knowledge and actionable intelligence can be garnered from these evermore frequent revisits of the planet’s surface? How can I find a market for this analysis? However, what is rarely considered is what is the educational value of the imagery? As students and children become more aware of our several decades of advance in viewing our current planetary state, we should find mechanisms which serve their curiosity, helping to satisfy our children’s simple quest to explore and learn more about what they are seeing. The following study describes the reasons why current GEO and LEO observation platforms are inadequate to provide truly global RGB coverage on an update time-scale of 5-min and proposes an alternative, low-cost, GEO + Molniya 3U CubeSat constellation to perform such an application.


Author(s):  
A. Finn ◽  
K. Rogers ◽  
J. Meade ◽  
J. Skinner ◽  
A. Zargarian

<p><strong>Abstract.</strong> An acoustic signature generated by an unmanned aerial vehicle is used in conjunction with tomography to remotely sense temperature and wind profiles within a volume of atmosphere up to an altitude of 120&amp;thinsp;m and over an area of 300&amp;thinsp;m&amp;thinsp;&amp;times;&amp;thinsp;300&amp;thinsp;m. Sound fields recorded onboard the aircraft and by an array of microphones on the ground are compared and converted to sound speed estimates for the ray paths intersecting the intervening medium. Tomographic inversion is then used to transform these sound speed values into three-dimensional profiles of virtual temperature and wind velocity, which enables the atmosphere to be visualised and monitored over time. The wind and temperature estimates obtained using this method are compared to independent measurements taken by a co-located mid-range ZephIR LIDAR and sensors onboard the aircraft. These comparisons show correspondences to better than 0.5&amp;thinsp;&amp;deg;C and 0.3&amp;thinsp;m/s for temperature and wind velocity, respectively.</p>


2013 ◽  
Vol 416-417 ◽  
pp. 806-810
Author(s):  
Wei Li

The paper proposed program of lower-cost traditional 8-bit micro-controller with Web servers function, and is designed for remote control system. The system has the flexibility and low cost. And according to the actual needs of the decision-making and management of plant irrigation, intelligent irrigation system was designed and implemented.The system solve the difficult and critical hardware products import prices too high and difficult to promote for distribution of soil temperature and humidity monitoring.The system cost compared to similar foreign products decreased 44.8%.Compared with traditional irrigation methods, crop water use efficiency of 22.6%.The design of software and thinking can popularize and promote practical reference value, the future of smart home system.


2018 ◽  
Vol 176 ◽  
pp. 02008
Author(s):  
Erland Källén

The ADM/Aeolus wind lidar mission will provide a global coverage of atmospheric wind profiles. Atmospheric wind observations are required for initiating weather forecast models and for predicting and monitoring long term climate change. Improved knowledge of the global wind field is widely recognised as fundamental to advancing the understanding and prediction of weather and climate. In particular over tropical areas there is a need for better wind data leading to improved medium range (3-10 days) weather forecasts over the whole globe.


2019 ◽  
Vol 40 (4) ◽  
pp. 045002
Author(s):  
Suthyvann Sor ◽  
Rafael Bardera ◽  
Adelaida García-Magariño ◽  
Juan Carlos Matías García ◽  
Eduardo Donoso

2015 ◽  
Vol 143 (11) ◽  
pp. 4631-4644 ◽  
Author(s):  
David P. Mulholland ◽  
Patrick Laloyaux ◽  
Keith Haines ◽  
Magdalena Alonso Balmaseda

Abstract Current methods for initializing coupled atmosphere–ocean forecasts often rely on the use of separate atmosphere and ocean analyses, the combination of which can leave the coupled system imbalanced at the beginning of the forecast, potentially accelerating the development of errors. Using a series of experiments with the European Centre for Medium-Range Weather Forecasts coupled system, the magnitude and extent of these so-called initialization shocks is quantified, and their impact on forecast skill measured. It is found that forecasts initialized by separate oceanic and atmospheric analyses do exhibit initialization shocks in lower atmospheric temperature, when compared to forecasts initialized using a coupled data assimilation method. These shocks result in as much as a doubling of root-mean-square error on the first day of the forecast in some regions, and in increases that are sustained for the duration of the 10-day forecasts performed here. However, the impacts of this choice of initialization on forecast skill, assessed using independent datasets, were found to be negligible, at least over the limited period studied. Larger initialization shocks are found to follow a change in either the atmosphere or ocean model component between the analysis and forecast phases: changes in the ocean component can lead to sea surface temperature shocks of more than 0.5 K in some equatorial regions during the first day of the forecast. Implications for the development of coupled forecast systems, particularly with respect to coupled data assimilation methods, are discussed.


Author(s):  
Rajesh Bajpai ◽  
Manoj Semwal ◽  
C. P. Singh

The lichens are one of the most sensitive organism in nature among the different elements of biodiversity and can be affected more due to climate change. Lichens fulfil their water need from rain, fog and dew present in the atmosphere. The change in atmospheric temperature influence, to a greater extent, the thallus temperature and physiology of lichens which leads to emergence of new ecotype and finally the shift in a species. The impact of climatic factors on lichens ecophysiology, is different from higher plantsis due to the poikilohydric nature. The lichen bioindicator communities have been shown to exhibit correlation with climatic factors of an area. The changes in lichen biomass, frequency, diversity and indicatorcommunity indices, indicate changes in environmental gradients (temperature, humidity and UV radiation). A number of techniques regarding study the environmental and climatic change are available. However, the present correspondence hypothesized about some easy and low cost techniques to monitor climate change utilizing lichens. The overview will also leads to assess patterns of lichens responses with species representation and towards its understanding the current and future changes in climate of an area.


2020 ◽  
Vol 12 (8) ◽  
pp. 3246
Author(s):  
Maurizio Bacci ◽  
Youchaou Ousman Baoua ◽  
Vieri Tarchiani

Agriculture production in Nigerien rural areas mainly depends on weather variability. Weather forecasts produced by national or international bodies have very limited dissemination in rural areas and even if broadcast by local radio, they remain generic and limited to short-term information. According to several experiences in West Africa, weather and climate services (WCSs) have great potential to support farmers’ decision making. The challenge is to reach local communities with tailored information about the future weather to support strategic and tactical crop management decisions. WCSs, in West Africa, are mainly based on short-range weather forecasts and seasonal climate forecasts, while medium-range weather forecasts, even if potentially very useful for crop management, are rarely produced. This paper presents the results of a pilot initiative in Niger to reach farming communities with 10-day forecasts from the National Oceanic and Atmospheric Administration—Global Forecast System (NOAA-GFS) produced by the National Centers for Environmental Prediction (NCEP). After the implementation of the download and treatment chain, the Niger National Meteorological Directorate can provide 10-day agrometeorological forecasts to the agricultural extension services in eight rural municipalities. Exploiting the users’ evaluation of the forecasts, an analysis of usability and overall performance of the service is described. The results demonstrate that, even in rural and remote areas, agrometeorological forecasts are valued as powerful and useful information for decision-making processes. The service can be implemented at low cost with effective technologies making it affordable and sustainable even in developing countries. Nonetheless, the service’s effectiveness depends on several aspects mainly related to the way information is communicated to the public.


Sign in / Sign up

Export Citation Format

Share Document