scholarly journals Retrieval algorithm for CO<sub>2</sub> and CH<sub>4</sub> column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite

2011 ◽  
Vol 4 (4) ◽  
pp. 717-734 ◽  
Author(s):  
Y. Yoshida ◽  
Y. Ota ◽  
N. Eguchi ◽  
N. Kikuchi ◽  
K. Nobuta ◽  
...  

Abstract. The Greenhouse gases Observing SATellite (GOSAT) was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here, we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS). The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from instrumental noise. The interferences due to auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and temporal variation patterns of the retrieved column abundances show features similar to those of an atmospheric transport model.

2010 ◽  
Vol 3 (6) ◽  
pp. 4791-4833 ◽  
Author(s):  
Y. Yoshida ◽  
Y. Ota ◽  
N. Eguchi ◽  
N. Kikuchi ◽  
K. Nobuta ◽  
...  

Abstract. The Greenhouse gases Observing SATellite (GOSAT) was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS). The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from the instrumental noise. The interferences by auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and the temporal variation patterns of the retrieved column abundances agree well with the current state of knowledge.


2013 ◽  
Vol 6 (6) ◽  
pp. 1533-1547 ◽  
Author(s):  
Y. Yoshida ◽  
N. Kikuchi ◽  
I. Morino ◽  
O. Uchino ◽  
S. Oshchepkov ◽  
...  

Abstract. The column-averaged dry-air mole fractions of carbon dioxide and methane (XCO2 and XCH4) have been retrieved from Greenhouse gases Observing SATellite (GOSAT) Short-Wavelength InfraRed (SWIR) observations and released as a SWIR L2 product from the National Institute for Environmental Studies (NIES). XCO2 and XCH4 retrieved using the version 01.xx retrieval algorithm showed large negative biases and standard deviations (−8.85 and 4.75 ppm for XCO2 and −20.4 and 18.9 ppb for XCH4, respectively) compared with data of the Total Carbon Column Observing Network (TCCON). Multiple reasons for these error characteristics (e.g., solar irradiance database, handling of aerosol scattering) are identified and corrected in a revised version of the retrieval algorithm (version 02.xx). The improved retrieval algorithm shows much smaller biases and standard deviations (−1.48 and 2.09 ppm for XCO2 and −5.9 and 12.6 ppb for XCH4, respectively) than the version 01.xx. Also, the number of post-screened measurements is increased, especially at northern mid- and high-latitudinal areas.


2013 ◽  
Vol 6 (1) ◽  
pp. 949-988 ◽  
Author(s):  
Y. Yoshida ◽  
N. Kikuchi ◽  
I. Morino ◽  
O. Uchino ◽  
S. Oshchepkov ◽  
...  

Abstract. The column-averaged dry-air mole fractions of carbon dioxide and methane (XCO2 and XCH4) have been retrieved from Greenhouse gases Observing SATellite (GOSAT) Short-Wavelength InfraRed (SWIR) observations. XCO2 and XCH4 retrieved using the version 01.xx retrieval algorithm showed large negative biases and standard deviations (−8.85 ppm and 4.75 ppm for XCO2 and −20.4 ppb and 18.9 ppb for XCH4, respectively) compared with data of the Total Carbon Column Observing Network (TCCON). Multiple reasons for these error characteristics (e.g. solar irradiance database, handling of aerosol scattering) are identified and corrected in a revised version of the retrieval algorithm (version 02.xx). The improved retrieval algorithm shows much smaller biases and standard deviations (−1.48 ppm and 2.10 ppm for XCO2 and −6.0 ppb and 12.5 ppb for XCH4, respectively) than the version 01.xx. Also, the number of post-screened measurements is increased especially at northern mid- and high-latitudinal area.


2017 ◽  
Vol 17 (11) ◽  
pp. 6663-6678 ◽  
Author(s):  
Shreeya Verma ◽  
Julia Marshall ◽  
Mark Parrington ◽  
Anna Agustí-Panareda ◽  
Sebastien Massart ◽  
...  

Abstract. Airborne observations of greenhouse gases are a very useful reference for validation of satellite-based column-averaged dry air mole fraction data. However, since the aircraft data are available only up to about 9–13 km altitude, these profiles do not fully represent the depth of the atmosphere observed by satellites and therefore need to be extended synthetically into the stratosphere. In the near future, observations of CO2 and CH4 made from passenger aircraft are expected to be available through the In-Service Aircraft for a Global Observing System (IAGOS) project. In this study, we analyse three different data sources that are available for the stratospheric extension of aircraft profiles by comparing the error introduced by each of them into the total column and provide recommendations regarding the best approach. First, we analyse CH4 fields from two different models of atmospheric composition – the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System for Composition (C-IFS) and the TOMCAT/SLIMCAT 3-D chemical transport model. Secondly, we consider scenarios that simulate the effect of using CH4 climatologies such as those based on balloons or satellite limb soundings. Thirdly, we assess the impact of using a priori profiles used in the satellite retrievals for the stratospheric part of the total column. We find that the models considered in this study have a better estimation of the stratospheric CH4 as compared to the climatology-based data and the satellite a priori profiles. Both the C-IFS and TOMCAT models have a bias of about −9 ppb at the locations where tropospheric vertical profiles will be measured by IAGOS. The C-IFS model, however, has a lower random error (6.5 ppb) than TOMCAT (12.8 ppb). These values are well within the minimum desired accuracy and precision of satellite total column XCH4 retrievals (10 and 34 ppb, respectively). In comparison, the a priori profile from the University of Leicester Greenhouse Gases Observing Satellite (GOSAT) Proxy XCH4 retrieval and climatology-based data introduce larger random errors in the total column, being limited in spatial coverage and temporal variability. Furthermore, we find that the bias in the models varies with latitude and season. Therefore, applying appropriate bias correction to the model fields before using them for profile extension is expected to further decrease the error contributed by the stratospheric part of the profile to the total column.


2021 ◽  
Author(s):  
Arno Keppens ◽  
Jean-Christopher Lambert ◽  
Daan Hubert ◽  
Steven Compernolle ◽  
Tijl Verhoelst ◽  
...  

&lt;p&gt;Part of the space segment of EU&amp;#8217;s Copernicus Earth Observation programme, the Sentinel-5 Precursor (S5P) mission is dedicated to global and European atmospheric composition measurements of air quality, climate and the stratospheric ozone layer. On board of the S5P early afternoon polar satellite, the imaging spectrometer TROPOMI (TROPOspheric Monitoring Instrument) performs nadir measurements of the Earth radiance within the UV-visible and near-infrared spectral ranges, from which atmospheric ozone profile data are retrieved. Developed at the Royal Netherlands Meteorological Institute (KNMI) and based on the optimal estimation method, TROPOMI&amp;#8217;s operational ozone profile retrieval algorithm has recently been upgraded. With respect to early retrieval attempts, accuracy is expected to have improved significantly, also thanks to recent updates of the TROPOMI Level-1b data product. This work reports on the initial validation of the improved TROPOMI height-resolved ozone data in the troposphere and stratosphere, as collected both from the operational S5P Mission Performance Centre/Validation Data Analysis Facility (MPC/VDAF) and from the S5PVT scientific project CHEOPS-5p. Based on the same validation best practices as developed for and applied to heritage sensors like GOME-2, OMI and IASI (Keppens et al., 2015, 2018), the validation methodology relies on the analysis of data retrieval diagnostics &amp;#8211; like the averaging kernels&amp;#8217; information content &amp;#8211; and on comparisons of TROPOMI data with reference ozone profile measurements. The latter are acquired by ozonesonde, stratospheric lidar, and tropospheric lidar stations performing network operation in the context of WMO's Global Atmosphere Watch and its contributing networks NDACC and SHADOZ. The dependence of TROPOMI&amp;#8217;s ozone profile uncertainty on several influence quantities like cloud fraction and measurement parameters like sun and scan angles is examined and discussed. This work concludes with a set of quality indicators, enabling users to verify the fitness-for-purpose of the S5P data.&lt;/p&gt;


2020 ◽  
Author(s):  
Arno Keppens ◽  
Daan Hubert ◽  
Jean-Christopher Lambert ◽  
Steven Compernolle ◽  
Tijl Verhoelst ◽  
...  

&lt;p&gt;Part of the space segment of EU&amp;#8217;s Copernicus Earth Observation programme, the Sentinel-5 Precursor (S5P) mission is dedicated to global and European atmospheric composition measurements of air quality, climate and the stratospheric ozone layer. On board of the S5P early afternoon polar satellite, the imaging spectrometer TROPOMI (TROPOspheric Monitoring Instrument) performs nadir measurements of the Earth radiance within the UV-visible and near-infrared spectral ranges, from which atmospheric ozone profile data are retrieved. Developed at the Royal Netherlands Meteorological Institute (KNMI) and based on the optimal estimation method, TROPOMI&amp;#8217;s operational ozone profile retrieval algorithm has recently been upgraded. With respect to early retrieval attempts, accuracy is expected to have improved significantly, also thanks to recent updates of the TROPOMI Level-1b data product. This work reports on the initial validation of the improved TROPOMI height-resolved ozone data in the troposphere and stratosphere, as collected both from the operational S5P Mission Performance Centre/Validation Data Analysis Facility (MPC/VDAF) and from the S5PVT scientific project CHEOPS-5p. Based on the same validation best practices as developed for and applied to heritage sensors like GOME-2, OMI and IASI (Keppens et al., 2015, 2018), the validation methodology relies on the analysis of data retrieval diagnostics &amp;#8211; like the averaging kernels&amp;#8217; information content &amp;#8211; and on comparisons of TROPOMI data with reference ozone profile measurements. The latter are acquired by ozonesonde, stratospheric lidar, and tropospheric lidar stations performing network operation in the context of WMO's Global Atmosphere Watch and its contributing networks NDACC and SHADOZ. The dependence of TROPOMI&amp;#8217;s ozone profile uncertainty on several influence quantities like cloud fraction and measurement parameters like sun and scan angles is examined and discussed. This work concludes with a set of quality indicators enabling users to verify the fitness-for-purpose of the S5P data.&lt;/p&gt;


2013 ◽  
Vol 13 (10) ◽  
pp. 5265-5275 ◽  
Author(s):  
Y. Miyamoto ◽  
M. Inoue ◽  
I. Morino ◽  
O. Uchino ◽  
T. Yokota ◽  
...  

Abstract. Atmospheric column-averaged mole fractions of carbon dioxide (XCO2) at 53 locations around the world were derived from aircraft measurements covering the altitude range of about 1–10 km. We used CO2 vertical profile measurements from three major carbon cycle programs, a global climatological data set of air number density profiles and tropopause height for calculating XCO2 for the period of 2007–2009. Vertical profiles of the CO2 mixing ratio are complemented by tall tower data up to 400 m from the earth's surface and by simulated profiles in the stratosphere from a chemistry-transport model. The amplitude of the seasonal cycle of calculated XCO2 values shows clear latitudinal dependence, and the amplitude decreases from about 10 ppm at high latitudes in the Northern Hemisphere to at most 2 ppm in the tropics and the Southern Hemisphere. The uncertainties of XCO2 were estimated from assumptions about CO2 profiles for each flight. Typically, uncertainties were less than 1 ppm; thus, this data set is within the level of uncertainty needed for primary validation of XCO2 measurements by the Greenhouse gases Observing SATellite (GOSAT) and by future satellite missions for monitoring greenhouse gases.


2018 ◽  
Author(s):  
Robert R. Nelson ◽  
Christopher W. O'Dell

Abstract. The Orbiting Carbon Observatory-2 (OCO-2) was launched in 2014 with the goal of measuring the column-averaged dry-air mole fraction of carbon dioxide (XCO2) with sufficient precision and accuracy to infer regional carbon sources and sinks. One of the primary sources of error in near-infrared measurements of XCO2 is the scattering effects of cloud and aerosol layers. In this work, we study the impact of ingesting intelligent aerosol priors from the Goddard Earth Observing System Model, Version 5 (GEOS-5) into the OCO-2 ACOS V8 retrieval algorithm with the objective of reducing the error in XCO2 from real measurements. Multiple levels of both aerosol setup complexity and uncertainty on the aerosol priors were tested, ranging from a mostly unconstrained aerosol optical depth (AOD) setup to ingesting full aerosol profiles with high confidence. We find that using co-located GEOS-5 aerosol types and AODs with low uncertainty results in a small improvement in the retrieved XCO2 against the Total Carbon Column Observing Network relative to V8. In contrast, attempting to use modeled vertical information in the aerosol prior to improve the XCO2 retrieval generally gives poor results, as aerosol models struggle with the vertical placement of aerosol layers. To assess regional differences in XCO2, we compare our results to a global CO2 model validation suite. We find that the GEOS-5 setup performs better than V8 over Northern Africa and Central Asia, with the standard deviation of the XCO2 error reduced from 2.12 ppm to 1.83 ppm, due to a combination of smaller prior AODs and lower prior uncertainty. In general, the use of more intelligent aerosol priors shows promise but is currently restricted by the accuracy of aerosol models.


2004 ◽  
Vol 4 (6) ◽  
pp. 7217-7279 ◽  
Author(s):  
M. Buchwitz ◽  
R. de Beek ◽  
J. P. Burrows ◽  
H. Bovensmann ◽  
T. Warneke ◽  
...  

Abstract. The remote sensing of the atmospheric greenhouse gases methane (CH4) and carbon dioxide (CO2) in the troposphere from instrumentation aboard satellites is a new area of research. In this manuscript, results obtained from observations of the up-welling radiation in the near-infrared by SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY), which flies on board ENVISAT, are presented. Vertical columns of CH4, CO2 and oxygen (O2) have been retrieved and the (air or) O2-normalized CH4 and CO2 column amounts, the dry air column averaged mixing ratios XCH4 and XCO2 derived. In this manuscript the first results, obtained by using the version 0.4 of the Weighting Function Modified (WFM) DOAS retrieval algorithm applied to SCIAMACHY data, are described and compared with global models. This is an important step in assessing the quality and information content of the data products derived from SCIAMACHY observations. This study investigates the behaviour of CO2 and CH4 in the period from January to October 2003. The SCIAMACHY greenhouse gas column amounts and their mixing ratios for cloud free scenes over land are shown to be in reasonable agreement with models. Over the ocean, as a result of the lower surface spectral reflectance and resultant low signal to noise with the exception of sun glint conditions, the accuracy of the individual data products is poorer. The measured methane column amounts agree with the model columns within a few percent. The inter-hemispheric difference of the methane mixing ratios, determined from single day cloud free measurements over land, is in the range 30–110 ppbv and in reasonable agreement with the corresponding model data (48–71 ppbv). For the set of individual measurements the standard deviations of the difference with respect to the models are in the range ~100–200 ppbv (5–10%) and ±14.4 ppmv (3.9%) for XCH


2019 ◽  
Vol 11 (9) ◽  
pp. 1061 ◽  
Author(s):  
Xi Chen ◽  
Yi Liu ◽  
Dongxu Yang ◽  
Zhaonan Cai ◽  
Hongbin Chen ◽  
...  

Aerosols significantly affect carbon dioxide (CO2) retrieval accuracy and precision by modifying the light path. Hyperspectral measurements in the near infrared and shortwave infrared (NIR/SWIR) bands from the generation of new greenhouse gas satellites (e.g., the Chinese Global Carbon Dioxide Monitoring Scientific Experimental Satellite, TanSat) contain aerosol information for correction of scattering effects in the retrieval. Herein, a new approach is proposed for optimizing the aerosol model used in the TanSat CO2 retrieval algorithm to reduce CO2 uncertainties associated with aerosols. The weighting functions of hyperspectral observations with respect to elements in the state vector are simulated by a forward radiative transfer model. Using the optimal estimation method (OEM), the information content and each component of the CO2 column-averaged dry-air mole fraction (XCO2) retrieval errors from the TanSat simulations are calculated for typical aerosols which are described by Aerosol Robotic Network (AERONET) inversion products at selected sites based on the a priori and measurement assumptions. The results indicate that the size distribution parameters (reff, veff), real refractive index coefficient of fine mode (arf) and fine mode fraction (fmf) dominate the interference errors, with each causing 0.2–0.8 ppm of XCO2 errors. Given that only 4–7 degrees of freedom for signal (DFS) of aerosols can be obtained simultaneously and CO2 information decreases as more aerosol parameters are retrieved, four to seven aerosol parameters are suggested as the most appropriate for inclusion in CO2 retrieval. Focusing on only aerosol-induced XCO2 errors, forward model parameter errors, rather than interference errors, are dominant. A comparison of these errors across different aerosol parameter combination groups reveals that fewer aerosol-induced XCO2 errors are found when retrieving seven aerosol parameters. Therefore, the model selected as the optimal aerosol model includes aerosol optical depth (AOD), peak height of aerosol profile (Hp), width of aerosol profile (Hw), effective variance of fine mode aerosol (vefff), effective radius of coarse mode aerosol (reffc), coefficient a of the real part of the refractive index for the fine mode and coarse mode (arf and arc), with the lowest error of less than 1.7 ppm for all aerosol and surface types. For marine aerosols, only five parameters (AOD, Hp, Hw, reffc and arc) are recommended for the low aerosol information. This optimal aerosol model therefore offers a theoretical foundation for improving CO2 retrieval precision from real TanSat observations in the future.


Sign in / Sign up

Export Citation Format

Share Document