scholarly journals Characterization of gravity waves in the lower ionosphere using VLF observations at Comandante Ferraz Brazilian Antarctic Station

2019 ◽  
Author(s):  
Emilia Correia ◽  
Luis Tiago Medeiros Raunheitte ◽  
José Valentin Bageston ◽  
Dino Enrico D'Amico

Abstract. The goal of this work is to investigate the gravity waves (GWs) characteristics in the low ionosphere using very low frequency (VLF) radio signals. The spatial modulations produced by the GWs affect the conditions of the electron density at reflection height of the VLF signals, which produce fluctuations of the electrical conductivity in the D-region that can be detected as variations in the amplitude and phase of VLF narrowband signals. The analysis considered the VLF signal transmitted from the US Cutler/Marine (NAA) station that was received at Comandante Ferraz Brazilian Antarctic Station (EACF, 62.1° S, 58.4° W), which is a great circle path crossing longitudinally the Drake Passage. The wave periods of the GWs detected in the low ionosphere are obtained using the wavelet analysis applied to the VLF amplitude. The use of the VLF technique was validated comparing the wave period and duration properties of one GW event observed simultaneously with a co-located airglow all-sky imager both operating at EACF. The statistical analysis of the wave periods detected using VLF technique for 2007 showed that the GW events occur almost all nights, with a higher frequency per month from March to October. The predominant wave periods are more frequent between 10 and 15 min occurring preferentially during the equinoxes, but there are some events with periods higher than 60 min appearing only in the solstices (January and July). These results show that VLF technique is a powerful tool to obtain the wave period and duration of GW events in the low ionosphere, with the advantage to be independent of sky conditions, and can be used during daytime and year-round.

2020 ◽  
Vol 38 (2) ◽  
pp. 385-394
Author(s):  
Emilia Correia ◽  
Luis Tiago Medeiros Raunheitte ◽  
José Valentin Bageston ◽  
Dino Enrico D'Amico

Abstract. The goal of this work is to investigate the gravity wave (GW) characteristics in the low ionosphere using very low frequency (VLF) radio signals. The spatial modulations produced by the GWs affect the conditions of the electron density at reflection height of the VLF signals, which produce fluctuations of the electrical conductivity in the D region that can be detected as variations in the amplitude and phase of VLF narrowband signals. The analysis considered the VLF signal transmitted from the US Cutler, Maine (NAA) station that was received at Comandante Ferraz Brazilian Antarctic Station (EACF, 62.1∘ S, 58.4∘ W), with its great circle path crossing the Drake Passage longitudinally. The wave periods of the GWs detected in the low ionosphere are obtained using the wavelet analysis applied to the VLF amplitude. Here the VLF technique was used as a new aspect for monitoring GW activity. It was validated comparing the wave period and duration properties of one GW event observed simultaneously with a co-located airglow all-sky imager both operating at EACF. The statistical analysis of the seasonal variation of the wave periods detected using VLF technique for 2007 showed that the GW events occurred all observed days, with the waves with a period between 5 and 10 min dominating during night hours from May to September, while during daytime hours the waves with a period between 0 and 5 min are predominant the whole year and dominate all days from November to April. These results show that VLF technique is a powerful tool to obtain the wave period and duration of GW events in the low ionosphere, with the advantage of being independent of sky conditions, and it can be used during the whole day and year-round.


2021 ◽  
Vol 11 (23) ◽  
pp. 11574
Author(s):  
Vladimir A. Srećković ◽  
Desanka M. Šulić ◽  
Veljko Vujčić ◽  
Zoran R. Mijić ◽  
Ljubinko M. Ignjatović

Strong radiation from solar X-ray flares can produce increased ionization in the terrestrial D-region and change its structure. Moreover, extreme solar radiation in X-spectral range can create sudden ionospheric disturbances and can consequently affect devices on the terrain as well as signals from satellites and presumably cause numerous uncontrollable catastrophic events. One of the techniques for detection and analysis of solar flares is studying the variations in time of specific spectral lines. The aim of this work is to present our study of solar X-ray flare effects on D-region using very low-frequency radio signal measurements over a long path in parallel with the analysis of X-spectral radiation, and to obtain the atmospheric parameters (sharpness, reflection height, time delay). We introduce a novel modelling approach and give D-region coefficients needed for modelling this medium, as well as a simple expression for electron density of lower ionosphere plasmas. We provide the analysis and software on GitHub.


2008 ◽  
Vol 26 (7) ◽  
pp. 1793-1803 ◽  
Author(s):  
A. R. Jacobson ◽  
R. Holzworth ◽  
X.-M. Shao

Abstract. We analyze data on radio-reflection from the D-region of the lower ionosphere, retrieving the energy-reflection coefficient in the frequency range ~5–95 kHz. The data are the same as developed for a recent study of ionospheric-reflection height, and are based on recordings of powerful (multi-Gigawatt) radio emissions from a type of narrow (~10 μs) lightning discharge known as "Narrow Bipolar Events". The sequential appearance of first the groundwave signal, and then the ionospheric single-hop reflection signal, permits us to construct the energy-reflection ratio. We infer the energy reflection's statistical variation with solar zenith angle, angle-of-incidence, frequency, and propagation azimuth. There is also a marginally-significant response of the energy reflectivity to solar X-ray flux density. Finally, we review the relationship of our results to previous published reports.


2021 ◽  
Author(s):  
Abdellatif Benchafaa ◽  
Samir Nait Amor ◽  
Ghazali Mebarki

Abstract. In this work we show the result of the numerical simulation of the gravity waves (GWs) D region disturbance. Effectively, using the Glukhov-Pasko-Inan (GPI) model of the electron density in the D region we were figured out the response of the electron density due to gravity wave neutral atmosphere oscillation. As a consequence to the D region disturbance, the electron density sometimes increases when the neutral atmosphere density decreases and vice versa. This behavior was interpreted by the decreases or increases of ionization rate by chemical loss process. In a second simulation work, we used the Long Wave Propagation Capability (LWPC) code to simulate the Very Low Frequency (VLF) signal when the gravity wave disturbance crossed the VLF path. The effect of the disturbance is to decrease the VLF signal reflection height below the ambient altitude (87 km) when the electron density increases. On the other hand and when the electron density drops, the VLF reflection altitude increased higher than 87 km.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Caitano L. da Silva ◽  
Sophia D. Salazar ◽  
Christiano G. M. Brum ◽  
Pedrina Terra

AbstractOptical observations of transient luminous events and remote-sensing of the lower ionosphere with low-frequency radio waves have demonstrated that thunderstorms and lightning can have substantial impacts in the nighttime ionospheric D region. However, it remains a challenge to quantify such effects in the daytime lower ionosphere. The wealth of electron density data acquired over the years by the Arecibo Observatory incoherent scatter radar (ISR) with high vertical spatial resolution (300-m in the present study), combined with its tropical location in a region of high lightning activity, indicate a potentially transformative pathway to address this issue. Through a systematic survey, we show that daytime sudden electron density changes registered by Arecibo’s ISR during thunderstorm times are on average different than the ones happening during fair weather conditions (driven by other external factors). These changes typically correspond to electron density depletions in the D and E region. The survey also shows that these disturbances are different than the ones associated with solar flares, which tend to have longer duration and most often correspond to an increase in the local electron density content.


2008 ◽  
Vol 26 (7) ◽  
pp. 1731-1740 ◽  
Author(s):  
D. P. Grubor ◽  
D. M. Šulić ◽  
V. Žigman

Abstract. The classification of X-ray solar flares is performed regarding their effects on the Very Low Frequency (VLF) wave propagation along the Earth-ionosphere waveguide. The changes in propagation are detected from an observed VLF signal phase and amplitude perturbations, taking place during X-ray solar flares. All flare effects chosen for the analysis are recorded by the Absolute Phase and Amplitude Logger (AbsPal), during the summer months of 2004–2007, on the single trace, Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E) with a distance along the Great Circle Path (GCP) D≈2000 km in length. The observed VLF amplitude and phase perturbations are simulated by the computer program Long-Wavelength Propagation Capability (LWPC), using Wait's model of the lower ionosphere, as determined by two parameters: the sharpness (β in 1/km) and reflection height (H' in km). By varying the values of β and H' so as to match the observed amplitude and phase perturbations, the variation of the D-region electron density height profile Ne(z) was reconstructed, throughout flare duration. The procedure is illustrated as applied to a series of flares, from class C to M5 (5×10−5 W/m2 at 0.1–0.8 nm), each giving rise to a different time development of signal perturbation. The corresponding change in electron density from the unperturbed value at the unperturbed reflection height, i.e. Ne(74 km)=2.16×108 m−3 to the value induced by an M5 class flare, up to Ne(74 km)=4×1010 m−3 is obtained. The β parameter is found to range from 0.30–0.49 1/km and the reflection height H' to vary from 74–63 km. The changes in Ne(z) during the flares, within height range z=60 to 90 km are determined, as well.


2020 ◽  
Author(s):  
Giovanni Nico ◽  
Aleksandra Nina ◽  
Anita Ermini ◽  
Pierfrancesco Biagi

<p>In this work we use Very Low Frequency (VLF) radio signals, having a frequency in the bands 20-80 kHz, to study the VLF signal propagation in the atmosphere quite undisturbed conditions by selecting the signals recorded during night. As a good approximation, we can model the propagation of VLF radio signals as characterized by a ground-wave and a sky-wave propagation mode. The first one generates a radio signal that propagates in the channel ground-troposphere, while the second one generates a signal which propagates using the lower ionosphere as a reflector. The VLF receivers of the INFREP (European Network of Electromagnetic Radiation) network are used. These receivers have been installed since 2009 mainly in southern and central Europe and currently the INFREP network consists of 9 receivers. A 1-minute sampling interval is used to record the amplitude of VLF signals. Long time-series of VLF signals propagating during night are extracted from recorded signals to study possible seasonal effects due to temporal variations in the physical properties of troposphere. A graph theory approach is used to investigate the spatial correlation of the aforementioned effects at different receivers. A multivariate analysis is also applied to identify common temporal changes observed at VLF receivers.</p><p>This work was supported by the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR), Italy, under the project OT4CLIMA. This research is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, under the projects 176002 and III44002.</p>


2014 ◽  
Vol 2 (4) ◽  
pp. 2789-2812 ◽  
Author(s):  
A. Rozhnoi ◽  
M. Solovieva ◽  
B. Levin ◽  
M. Hayakawa ◽  
V. Fedun

Abstract. Very low and low frequency (VLF/LF) data recorded in the Far Eastern stations Petropavlovsk-Kamchatsky (158.92° E, 53.15° N), Yuzhno-Sakhalinsk (142.75° E, 46.95° N) and Yuzhno-Kurilsk (145.861° E, 44.03° N) are investigated to study the meteorological effects in the lower ionosphere. The results demonstrate the sensitivity of the VLF/LF signals to the variations of atmospheric pressure, humidity, wind velocity and temperature, and the VLF/LF record at the station of Yuzhno-Kurilsk is found to be most sensitive to those variations of atmospheric parameters. The region under consideration is characterized by high winter cyclonic activity in midlatitudes and strong summer and autumn typhoon activity in low latitudes. VLF/LF signal variations during 8 tropical cyclones (TCs) with different intensity are considered. Negative nighttime anomalies in the signal amplitude that are most probably caused by TC activity are found for 6 events. Those anomalies are observed during 1–2 days when TCs move inside the sensitivity zones of the subionospheric paths. Perturbations of the VLF signal observed during 2 TCs can be caused by both the TC influence and seismic activity, but no correlation between TC intensity and magnitude of the signal anomalies is found. Spectral analysis of the typhoon-induced disturbed signals revealed the fluctuations with time periods in the range of 7–16 and 15–55 min that corresponds to the range of internal gravity waves periods.


Author(s):  
Dmitry V Kulyamin ◽  
Valentin P. Dymnikov

AbstractThe paper presents a new neutral atmosphere and ionosphere D region coupled general circulation model (for altitudes of 0-90 km) with a high spatial resolution. Efficient numerical methods of its implementation are developed. The properties of differential formulation for a plasma-chemical model of ionosphere D region are studied, the existence of a global attractor in the non-negative half of the phase space is proved, an efficient semi-implicit numerical scheme possessing the charge conservation law is constructed to solve the system. The problem of radio waves propagation in the ionosphere D region has been considered for the coupled model, we validated the model on the base of radio signals monitoring data and developed a computational unit for calculation of the radio signal attenuation in the lower ionosphere. A satisfactory reproduction of the D region mean state is shown and the ability to develope this model for use in applied tasks is indicated.


Sign in / Sign up

Export Citation Format

Share Document