scholarly journals Large aerosol optical depths observed at an urban location in southern India associated with rain-deficit summer monsoon season

2004 ◽  
Vol 22 (8) ◽  
pp. 3073-3077 ◽  
Author(s):  
V. Vinoj ◽  
S. K. Satheesh ◽  
S. Suresh Babu ◽  
K. Krishna Moorthy

Abstract. Aerosol spectral optical depth (AOD) measurements were made covering three years (2001, 2002 and 2003) at an urban continental location, Bangalore (13°N, 77.6°E) in India. These ground-based observations have shown that AODs reach a maximum during April (~0.5 at 500nm) and minimum during the November to January period (~0.2). The Angstrom wavelength exponent (α) was ~1.1 during the dry season (December to April), which, in conjunction with the high optical depth indicates significant anthropogenic influence. Seasonal variations in AODs appear to have an association with monsoon rainfall. Large AODs (α~1.4) were observed during the rain-deficit summer monsoon season (SMS) of 2002, which persisted for more than six months. Enhancement in AODs during SMS 2002 was ~0.15 (at 500nm), compared to 2001 and 2003.

Author(s):  
Vimal Mishra ◽  
Saran Aadhar ◽  
Shanti Shwarup Mahto

AbstractFlash droughts cause rapid depletion in root-zone soil moisture and severely affect crop health and irrigation water demands. However, their occurrence and impacts in the current and future climate in India remain unknown. Here we use observations and model simulations from the large ensemble of Community Earth System Model to quantify the risk of flash droughts in India. Root-zone soil moisture simulations conducted using Variable Infiltration Capacity model show that flash droughts predominantly occur during the summer monsoon season (June–September) and driven by the intraseasonal variability of monsoon rainfall. Positive temperature anomalies during the monsoon break rapidly deplete soil moisture, which is further exacerbated by the land-atmospheric feedback. The worst flash drought in the observed (1951–2016) climate occurred in 1979, affecting more than 40% of the country. The frequency of concurrent hot and dry extremes is projected to rise by about five-fold, causing approximately seven-fold increase in flash droughts like 1979 by the end of the 21st century. The increased risk of flash droughts in the future is attributed to intraseasonal variability of the summer monsoon rainfall and anthropogenic warming, which can have deleterious implications for crop production, irrigation demands, and groundwater abstraction in India.


2019 ◽  
Vol 8 (3) ◽  
pp. 105-112
Author(s):  
Thu- Rein

Studies on percent cover and biomass of seagrasses from Shwe Thaung Yan coastal areas (Inn Din Gyi, Kyauk Nagar and Phoe Htaung Gyaing), the Southern parts of Rakhine Coastal Region, were carried out between March and August, 2018. A total of 8 species of seagrasses, namely Syringodiumisoetifolium (Ascherson) Danty, Halodulepinifolia (Miki) den Hartog, Haloduleuninervis (Forsskal) Ascherson, Cymodocearotundata Ehrenberg et Hemprich ex Ascherson, C. serrulata (R. Brown) Ascherson et Magnus, Thalassiahemprichii(Ehrenberg) Ascherson, Halophila major (Zoll.) Miquel and Enhalusacoroides (Linnaeus f.) Royle, were recorded in three study sites. Seagrass meadow in this study showed seasonal variations in both percent cover and biomass. Total seagrass coverage and biomass were higher in the dry season than in the monsoon season. Total seagrass coverage ranged between 8% and 75% in Phoe Htaung Gyaing, between 10% and 42% in Kyauk Nagar, and between 15% and 43% in Inn Din Gyi. Total seagrass mean biomass was 50.2413-259.846gdry.wtm-2 in Phoe Htaung Gyaing, 63.0194 -321.535gdry.wtm-2 in Kyauk Nagar, and 98.6819-416.237gdry.wtm-2 in Inn Din Gyi.


2016 ◽  
Author(s):  
Imran A. Girach ◽  
Narendra Ojha ◽  
Prabha R. Nair ◽  
Andrea Pozzer ◽  
Yogesh K. Tiwari ◽  
...  

Abstract. We present ship-borne measurements of surface ozone, carbon monoxide and methane over the Bay of Bengal (BoB), the first time such measurements have been taken during the summer monsoon season, as a part of the Continental Tropical Convergence Zone (CTCZ) experiment during 2009. O3, CO, and CH4 mixing ratios exhibited significant spatial and temporal variability in the ranges of 8–54 nmol mol−1, 50–200 nmol mol−1, and 1.57–2.15 µmol mol−1, with means of 29.7 ± 6.8 nmol mol−1, 96 ± 25 nmol mol−1, and 1.83 ± 0.14 µmol mol−1, respectively. The average mixing ratios of trace gases over northern BoB (O3: 30 ± 7 nmol mol−1, CO: 95 ± 25 nmol mol−1, CH4: 1.86 ± 0.12 µmol mol−1), in airmasses from northern or central India, did not differ much from those over central BoB (O3: 27 ± 5 nmol mol−1, CO: 101 ± 27 nmol mol−1, CH4: 1.72 ± 0.14 µmol mol−1), in airmasses from southern India. Spatial variability is observed to be most significant for CH4. The ship-based observations, in conjunction with backward air trajectories and ground-based measurements over the Indian region, are analyzed to estimate a net ozone production of 1.5–4 nmol mol−1 day−1 in the outflow. Ozone mixing ratios over the BoB showed large reductions (by ~ 20 nmol mol−1) during four rainfall events. Temporal changes in the meteorological parameters, in conjunction with ozone vertical profiles, indicate that these low ozone events are associated with downdrafts of free-tropospheric ozone-poor airmasses. While the observed variations in O3 and CO are successfully reproduced using the Weather Research and Forecasting model with Chemistry (WRF-Chem), this model overestimates mean concentrations by about 20 %, generally overestimating O3 mixing ratios during the rainfall events. Analysis of the chemical tendencies from model simulations for a low-O3 event on August 10, 2009, captured successfully by the model, shows the key role of horizontal advection in rapidly transporting ozone-rich airmasses across the BoB. Our study fills a gap in the availability of trace gas measurements over the BoB, and when combined with data from previous campaigns, reveals large seasonal amplitude (~ 39 and ~ 207 nmol mol−1 for O3 and CO, respectively) over the northern BoB.


2005 ◽  
Vol 23 (6) ◽  
pp. 2011-2030 ◽  
Author(s):  
S. K. Nair ◽  
K. Parameswaran ◽  
K. Rajeev

Abstract. Aerosol distribution over the oceanic regions around the Indian subcontinent and its seasonal and interannual variabilities are studied using the aerosol optical depth (AOD) derived from NOAA-14 and NOAA-16 AVHRR data for the period of November 1995–December 2003. The air-mass types over this region during the Asian summer monsoon season (June–September) are significantly different from those during the Asian dry season (November–April). Hence, the aerosol loading and its properties over these oceanic regions are also distinctly different in these two periods. During the Asian dry season, the Arabian Sea and Bay of Bengal are dominated by the transport of aerosols from Northern Hemispheric landmasses, mainly the Indian subcontinent, Southeast Asia and Arabia. This aerosol transport is rather weak in the early part of the dry season (November–January) compared to that in the later period (February–April). Large-scale transport of mineral dust from Arabia and the production of sea-salt aerosols, due to high surface wind speeds, contribute to the high aerosol loading over the Arabian Sea region during the summer monsoon season. As a result, the monthly mean AOD over the Arabian Sea shows a clear annual cycle with the highest values occurring in July. The AOD over the Bay of Bengal and the Southern Hemisphere Indian Ocean also displays an annual cycle with maxima during March and October, respectively. The amplitude of the annual variation is the largest in coastal Arabia and the least in the Southern Hemisphere Indian Ocean. The interannual variability in AOD is the largest over the Southeast Arabian Sea (seasonal mean AOD varies from 0.19 to 0.42) and the northern Bay of Bengal (seasonal mean AOD varies from 0.24 to 0.39) during the February–April period and is the least over the Southern Hemisphere Indian Ocean. This study also investigates the altitude regions and pathways of dominant aerosol transport by combining the AOD distribution with the atmospheric circulation. Keywords. Atmospheric composition and structure (Aerosols and particles) – Meteorology and atmospheric dynamics (Climatology) – Oceanography: physical (Ocean fog and aerosols)


2021 ◽  
Author(s):  
Jayesh Phadtare ◽  
Jennifer Fletcher ◽  
Andrew Ross ◽  
Andy Turner ◽  
Thorwald Stein ◽  
...  

<p>Precipitation distribution around an orographic barrier is controlled by the Froude Number (Fr) of the impinging flow. Fr is essentially a ratio of kinetic energy and stratification of winds around the orography. For Fr > 1 (Fr <1), the flow is unblocked (blocked) and precipitation occurs over the mountain peaks and the lee region (upwind region). While idealized modelling studies have robustly established this relationship, its widespread real-world application is hampered by the dearth of relevant observations. Nevertheless, the data collected in the field campaigns give us an opportunity to explore this relationship and provide a testbed for numerical models. A realistic distribution of precipitation over a mountainous region in these models is necessary for flash-flood and landslide forecasting. The Western Ghats region is a classic example where the orographically induced precipitation leads to floods and landslides during the summer monsoon season. In the recent INCOMPASS field campaign, it was shown that the precipitation over the west coast of India occurred in alternate offshore and onshore phases. The Western Ghats received precipitation predominantly during the onshore phase which was characterized by a stronger westerly flow. Here, using the radiosonde data from a station over the Indian west coast and IMERG precipitation product, we show that climatologically, these phases can be mapped over an Fr-based classification of the monsoonal westerly flow. Classifying the flow as 'High Fr' (Fr >1), 'Moderate Fr' ( 0.5 < Fr ≤ 1) and 'Low Fr' ( Fr ≤ 0.5 ) gives three topographical modes of precipitation -- 'Orographic', 'Coastal' and 'Offshore', respectively.  Moreover, these modes are not sensitive to the choice of radiosonde station over the west coast.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 717 ◽  
Author(s):  
Feng Chen ◽  
Magdalena Opała-Owczarek ◽  
Piotr Owczarek ◽  
Youping Chen

This study investigates the potential reconstruction of summer monsoon season streamflow variations in the middle reaches of the Yellow River from tree rings in the Qinling Mountains. The regional chronology is significantly positively correlated with the July–October streamflow of the middle Yellow River from 1919 to 1949, and the derived reconstruction explains 36.4% of the actual streamflow variance during this period. High streamflows occurred during 1644–1757, 1795–1806, 1818–1833, 1882–1900, 1909–1920 and 1933–1963. Low streamflows occurred during 1570–1643, 1758–1794, 1807–1817, 1834–1868, 1921–1932 and 1964–2012. High and low streamflow intervals also correspond well to the East Asian summer monsoon (EASM) intensity. Some negative correlations of our streamflow reconstruction with Indo-Pacific sea surface temperature (SST) also suggest the linkage of regional streamflow changes to the Asian summer monsoon circulation. Although climate change has some important effects on the variation in streamflow, anthropogenic activities are the primary factors mediating the flow cessation of the Yellow River, based on streamflow reconstruction.


Author(s):  
Raghavendra Ashrit ◽  
S. Indira Rani ◽  
Sushant Kumar ◽  
S. Karunasagar ◽  
T. Arulalan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document