scholarly journals Magnetospheric magnetic field modelling for the 2011 and 2012 HST Saturn aurora campaigns – implications for auroral source regions

2014 ◽  
Vol 32 (6) ◽  
pp. 689-704 ◽  
Author(s):  
E. S. Belenkaya ◽  
S. W. H. Cowley ◽  
C. J. Meredith ◽  
J. D. Nichols ◽  
V. V. Kalegaev ◽  
...  

Abstract. A unique set of images of Saturn's northern polar UV aurora was obtained by the Hubble Space Telescope in 2011 and 2012 at times when the Cassini spacecraft was located in the solar wind just upstream of Saturn's bow shock. This rare situation provides an opportunity to use the Kronian paraboloid magnetic field model to examine source locations of the bright auroral features by mapping them along field lines into the magnetosphere, taking account of the interplanetary magnetic field (IMF) measured near simultaneously by Cassini. It is found that the persistent dawn arc maps to closed field lines in the dawn to noon sector, with an equatorward edge generally located in the inner part of the ring current, typically at ~ 7 Saturn radii (RS) near dawn, and a poleward edge that maps variously between the centre of the ring current and beyond its outer edge at ~ 15 RS, depending on the latitudinal width of the arc. This location, together with a lack of response in properties to the concurrent IMF, suggests a principal connection with ring-current and nightside processes. The higher-latitude patchy auroras observed intermittently near to noon and at later local times extending towards dusk are instead found to straddle the model open–closed field boundary, thus mapping along field lines to the dayside outer magnetosphere and magnetopause. These emissions, which occur preferentially for northward IMF directions, are thus likely associated with reconnection and open-flux production at the magnetopause. One image for southward IMF also exhibits a prominent patch of very high latitude emissions extending poleward of patchy dawn arc emissions in the pre-noon sector. This is found to lie centrally within the region of open model field lines, suggesting an origin in the current system associated with lobe reconnection, similar to that observed in the terrestrial magnetosphere for northward IMF.

2003 ◽  
Vol 21 (8) ◽  
pp. 1709-1722 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
J. A. Wild

Abstract. We calculate the azimuthal magnetic fields expected to be present in Saturn’s magnetosphere associated with two physical effects, and compare them with the fields observed during the flybys of the two Voyager spacecraft. The first effect is associated with the magnetosphere-ionosphere coupling currents which result from the sub-corotation of the magnetospheric plasma. This is calculated from empirical models of the plasma flow and magnetic field based on Voyager data, with the effective Pedersen conductivity of Saturn’s ionosphere being treated as an essentially free parameter. This mechanism results in a ‘lagging’ field configuration at all local times. The second effect is due to the day-night asymmetric confinement of the magnetosphere by the solar wind (i.e. the magnetopause and tail current system), which we have estimated empirically by scaling a model of the Earth’s magnetosphere to Saturn. This effect produces ‘leading’ fields in the dusk magnetosphere, and ‘lagging’ fields at dawn. Our results show that the azimuthal fields observed in the inner regions can be reasonably well accounted for by plasma sub-corotation, given a value of the effective ionospheric Pedersen conductivity of ~ 1–2 mho. This statement applies to field lines mapping to the equator within ~ 8 RS (1 RS is taken to be 60 330 km) of the planet on the dayside inbound passes, where the plasma distribution is dominated by a thin equatorial heavy-ion plasma sheet, and to field lines mapping to the equator within ~ 15 RS on the dawn side outbound passes. The contributions of the magnetopause-tail currents are estimated to be much smaller than the observed fields in these regions. If, however, we assume that the azimuthal fields observed in these regions are not due to sub-corotation but to some other process, then the above effective conductivities define an upper limit, such that values above ~ 2 mho can definitely be ruled out. Outside of this inner region the spacecraft observed both ‘lagging’ and ‘leading’ fields in the post-noon dayside magnetosphere during the inbound passes, with ‘leading’ fields being observed both adjacent to the magnetopause and in the ring current region, and ‘lagging’ fields being observed between. The observed ‘lagging’ fields are consistent in magnitude with the sub-corotation effect with an effective ionospheric conductivity of ~ 1–2 mho, while the ‘leading’ fields are considerably larger than those estimated for the magnetopause-tail currents, and appear to be indicative of the presence of another dynamical process. No ‘leading’ fields were observed outside the inner region on the dawn side outbound passes, with the azimuthal fields first falling below those expected for sub-corotation, before increasing, to exceed these values at radial distances beyond ~ 15–20 RS , where the effect of the magnetopause-tail currents becomes significant. As a by-product, our investigation also indicates that modification and scaling of terrestrial magnetic field models may represent a useful approach to modelling the three-dimensional magnetic field at Saturn.Key words. Magnetospheric physics (current systems; magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions)


2010 ◽  
Vol 28 (8) ◽  
pp. 1559-1570 ◽  
Author(s):  
E. S. Belenkaya ◽  
I. I. Alexeev ◽  
M. S. Blokhina ◽  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
...  

Abstract. To gain better understanding of auroral processes in Saturn's magnetosphere, we compare ultraviolet (UV) auroral images obtained by the Hubble Space Telescope (HST) with the position of the open-closed field line boundary in the ionosphere calculated using a magnetic field model that employs Cassini measurements of the interplanetary magnetic field (IMF) as input. Following earlier related studies of pre-orbit insertion data from January 2004 when Cassini was located ~ 1300 Saturn radii away from the planet, here we investigate the interval 12–15 February 2008, when UV images of Saturn's southern dayside aurora were obtained by the HST while the Cassini spacecraft measured the IMF in the solar wind just upstream of the dayside bow shock. This configuration thus provides an opportunity, unique to date, to determine the IMF impinging on Saturn's magnetosphere during imaging observations, without the need to take account of extended and uncertain interplanetary propagation delays. The paraboloid model of Saturn's magnetosphere is then employed to calculate the magnetospheric magnetic field structure and ionospheric open-closed field line boundary for averaged IMF vectors that correspond, with appropriate response delays, to four HST images. We show that the IMF-dependent open field region calculated from the model agrees reasonably well with the area lying poleward of the UV emissions, thus supporting the view that the poleward boundary of Saturn's auroral oval in the dayside ionosphere lies adjacent to the open-closed field line boundary.


2020 ◽  
Author(s):  
Tatphicha Promfu ◽  
Suwicha Wannawichian ◽  
Jonathan Nichols ◽  
John Clarke

<p>In this work, the locations of observed Ganymede’s magnetic footprint were compared with the locations predicted by the magnetic field model under different plasma conditions. The shifts of Ganymede's magnetic footprint locations from average footpath given by Grodent et al. (2008) were analyzed. The average path is created from about 1000 images taken by instruments onboarded Hubble Space Telescope (HST). The position shifts indicate the variation of magnetic field line mapping from Ganymede to Jupiter’s ionosphere. The two sets of data from HST were analyzed to obtain the locations of Ganymede’s magnetic footprint in 2007 and 2016. For both sets of data, at longitude ranging approximately from 170° to 180°, we found that the locations were significantly shifted in poleward direction between 0.5° to 2° from the average footpath. Different from data in May 2007, the Ganymede’s magnetic footprint locations in May 2016 at longitude about 160° could possibly locate in equatorward direction. At orbital distance of Ganymede about 15 R<sub>J</sub>, in Jupiter’s middle magnetosphere, there is strong influence of plasma, whose major source is Io’s volcanic eruptions. Thus, the variations of plasma resulting in the stretching of magnetic field lines affect the magnetic field mapping from Ganymede to ionosphere. Furthermore, based on the magnetodisc model, the hot plasma pressure anisotropy strongly influences the stretching of the field lines and the mapped locations of Ganymede’s footprint in ionosphere to be shifted in either poleward or equatorward directions. In this study, we detected both poleward and equatorward shifts in different observations, whose connection with the plasma environment in the middle magnetosphere awaits for further study.</p>


2011 ◽  
Vol 29 (7) ◽  
pp. 1233-1246 ◽  
Author(s):  
E. S. Belenkaya ◽  
S. W. H. Cowley ◽  
J. D. Nichols ◽  
M. S. Blokhina ◽  
V. V. Kalegaev

Abstract. We determine the field-aligned mapping of Saturn's auroras into the magnetosphere by combining UV images of the southern dayside oval obtained by the Hubble Space Telescope (HST) with a global model of the magnetospheric magnetic field. The model is tailored to simulate prevailing conditions in the interplanetary medium, corresponding to high solar wind dynamic pressure and variable interplanetary magnetic field (IMF) strength and direction determined from suitably lagged field data observed just upstream of Saturn's dayside bow shock by the Cassini spacecraft. Two out of four images obtained in February 2008 when such simultaneous data are available are examined in detail, exemplifying conditions for northward and southward IMF. The model field structure in the outer magnetosphere and tail is found to be very different in these cases. Nevertheless, the dayside UV oval is found to have a consistent location relative to the field structure in each case. The poleward boundary of the oval is located close to the open-closed field boundary and thus maps to the vicinity of the magnetopause, consistent with previous results. The equatorward boundary of the oval then maps typically near the outer boundary of the equatorial ring current appropriate to the compressed conditions prevailing. Similar results are also found for related images from the January 2004 HST data set. These new results thus show that the mapped dayside UV oval typically spans the outer magnetosphere between the outer part of the ring current and the magnetopause. It does not encompass the region of primary corotation flow breakdown within the inner Enceladus torus.


2004 ◽  
Vol 22 (4) ◽  
pp. 1267-1295 ◽  
Author(s):  
G. Le ◽  
C. T. Russell ◽  
K. Takahashi

Abstract. Our examination of the 20 years of magnetospheric magnetic field data from ISEE, AMPTE/CCE and Polar missions has allowed us to quantify how the ring current flows and closes in the magnetosphere at a variety of disturbance levels. Using intercalibrated magnetic field data from the three spacecraft, we are able to construct the statistical magnetic field maps and derive 3-dimensional current density by the simple device of taking the curl of the statistically determined magnetic field. The results show that there are two ring currents, an inner one that flows eastward at ~3 RE and a main westward ring current at ~4–7 RE for all levels of geomagnetic disturbances. In general, the in-situ observations show that the ring current varies as the Dst index decreases, as we would expect it to change. An unexpected result is how asymmetric it is in local time. Some current clearly circles the magnetosphere but much of the energetic plasma stays in the night hemisphere. These energetic particles appear not to be able to readily convect into the dayside magnetosphere. During quiet times, the symmetric and partial ring currents are similar in strength (~0.5MA) and the peak of the westward ring current is close to local midnight. It is the partial ring current that exhibits most drastic intensification as the level of disturbances increases. Under the condition of moderate magnetic storms, the total partial ring current reaches ~3MA, whereas the total symmetric ring current is ~1MA. Thus, the partial ring current contributes dominantly to the decrease in the Dst index. As the ring current strengthens the peak of the partial ring current shifts duskward to the pre-midnight sector. The partial ring current is closed by a meridional current system through the ionosphere, mainly the field-aligned current, which maximizes at local times near the dawn and dusk. The closure currents flow in the sense of region-2 field-aligned currents, downward into the ionosphere near the dusk and upward out of the ionosphere near the dawn. Key words. Magnetospheric physics (current systems; storms and substorms; magnetospheric configuration and dynamics)


2021 ◽  
Author(s):  
Jiutong Zhao ◽  
Qiugang Zong ◽  
Chao Yue ◽  
Weijie Sun ◽  
Hui Zhang ◽  
...  

Abstract Energetic protons can carry a longitudinal electric current via their gradient and curvature drift around a planet and form a current system known as the ring current. The ring current has been observed in the intrinsic magnetosphere of Earth, Jupiter, and Saturn. However, there is still lacking evidence of ring current in Mercury’s magnetosphere, which contains significantly weaker and oppressive “dipolar” magnetic field and the charged particles are thought able to efficiently escape the magnetosphere through magnetopause shadowing and/or directly hitting the surface. Here we present the first observational evidence of Mercury ring current with the measurement of MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER). The ring current is bifurcated under moderate solar wind forcing, which is caused by the off-equatorial magnetic minima on the noon side and tends to vanish during weak solar wind forcing. This morphology is validated by a test-particle simulation with a Mercury’s dynamic magnetic field model. The total energy stored in the ring current exceeds 5x1010 J during active times, indicating that magnetic storms may also occur in Mercury’s magnetosphere.


2009 ◽  
Vol 27 (10) ◽  
pp. 4069-4073 ◽  
Author(s):  
E. E. Antonova ◽  
I. P. Kirpichev ◽  
I. L. Ovchinnikov ◽  
K. G. Orlova ◽  
M. V. Stepanova

Abstract. This study is focused on the problem of the localization of substorm expansion onset. In this context, the high latitude topology of transverse magnetospheric currents has been analyzed. This study has included the radial distribution of plasma pressure near noon, obtained using the THEMIS-B satellite data, the daytime compression of magnetic field lines and the existence of magnetic field minima far from the equatorial plane, given by all geomagnetic field models. As a result, the dayside integral transverse currents at the geocentric distances 7–10 RE has been estimated. It is suggested, that nightside transverse currents at geocentric distances ~7–10 RE are closed inside the magnetosphere and with dayside transverse currents form surrounding the Earth current system (cut ring current or CRC) which topologically is the high latitude continuation of ordinary ring current. A possibility of localization of substorm expansion onset at the nighside CRC region is analyzed using the experimental evidences that the onset is localized at geocentric distances <10 RE.


2003 ◽  
Vol 21 (3) ◽  
pp. 661-669 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley

Abstract. We examine the residual (measured minus internal) magnetic field vectors observed in Saturn’s magnetosphere during the Pioneer-11 fly-by in 1979, and compare them with those observed during the Voyager-1 and -2 fly-bys in 1980 and 1981. We show for the first time that a ring current system was present within the magnetosphere during the Pioneer-11 encounter, which was qualitatively similar to those present during the Voyager fly-bys. The analysis also shows, however, that the ring current was located closer to the planet during the Pioneer-11 encounter than during the comparable Voyager-1 fly-by, reflecting the more com-pressed nature of the magnetosphere at the time. The residual field vectors have been fit using an adaptation of the current system proposed for Jupiter by Connerney et al. (1981a). A model that provides a reasonably good fit to the Pioneer-11 Saturn data extends radially between 6.5 and 12.5 RS (compared with a noon-sector magnetopause distance of 17 RS), has a north-south extent of 4 RS, and carries a total current of 9.6 MA. A corresponding model that provides a qualitatively similar fit to the Voyager data, determined previously by Connerney et al. (1983), extends radially between 8 and 15.5 RS (compared with a noon-sector magnetopause distance for Voyager-1 of 23–24 RS), has a north-south extent of 6 RS, and carries a total current of 11.5 MA.Key words. Magnetospheric physics (current systems, magnetospheric configuration and dynamics, planetary magnetospheres)


2004 ◽  
Vol 33 (5) ◽  
pp. 723-728 ◽  
Author(s):  
G.I Pugacheva ◽  
U.B Jayanthi ◽  
N.G Schuch ◽  
A.A Gusev ◽  
W.N Spjeldvik

1974 ◽  
Vol 59 ◽  
pp. 177-177
Author(s):  
R. J. Tayler

It has been shown (Markey and Tayler, 1973; Tayler, 1973; Wright, 1973) that a wide range of simple magnetic field configurations in stars are unstable. Although the ultimate effect of the instabilities is unclear, it seems likely that they would lead to enhanced destruction of magnetic flux, so that magnetic field decay would be much more rapid than previously supposed. Instability is almost certain in a non-rotating star containing either a purely toroidal field or a purely poloidal field, which has closed field lines inside the star. In both cases the instability resembles the well known instabilities of cylindrical and toroidal current channels, modified by the constraint that motion must be almost entirely along surfaces of constant gravitational potential.If both toroidal and poloidal fields are present, the problem is more complicated. In a toroidal plasma with a helical field, the worst instabilities are also helical but it is impossible for a helical disturbance to be parallel to a surface of constant gravitational potential everywhere. As a result, the admixture of toroidal and poloidal fields has a stabilizing influence, but it is not at present clear whether the majority of such configurations are completely stable.The effect of rotation has not yet been studied but it will certainly be important if the rotation period is less than the time taken for an Alfvén wave to cross the region of interest. This is true in most stars unless the internal magnetic field is very much stronger than any observed field.


Sign in / Sign up

Export Citation Format

Share Document