scholarly journals Climate versus carbon dioxide controls on biomass burning: a model analysis of the glacial–interglacial contrast

2014 ◽  
Vol 11 (21) ◽  
pp. 6017-6027 ◽  
Author(s):  
M. Martin Calvo ◽  
I. C. Prentice ◽  
S. P. Harrison

Abstract. Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness. CO2 concentration constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence on CO2 concentration, the quantitative relationship between atmospheric CO2 concentration and biomass burning is not well understood. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial–interglacial changes in biomass burning to an increase in CO2, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided last glacial maximum (LGM) climate anomalies – that is, differences from the pre-industrial (PI) control climate – from the Palaeoclimate Modelling Intercomparison Project Phase~2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes from biomass burning were corrected for the model's observed prediction biases in contemporary regional average values for biomes. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux at the LGM was in the range of 1.0–1.4 Pg C year-1, about a third less than that modelled for PI time. LGM climate with pre-industrial CO2 (280 ppm) yielded unrealistic results, with global biomass burning fluxes similar to or even greater than in the pre-industrial climate. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on primary production and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.

2014 ◽  
Vol 11 (2) ◽  
pp. 2569-2593 ◽  
Author(s):  
M. Martin Calvo ◽  
I. C. Prentice ◽  
S. P. Harrison

Abstract. Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness; CO2 availability, in turn, constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence CO2 availability, the links between atmospheric CO2 and biomass burning are not well known. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to CO2 increase, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided Last Glacial Maximum (LGM) climate anomalies – that is, differences from the pre-industrial (PI) control climate – from the Palaeoclimate Modelling Intercomparison Project Phase 2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes in biomass burning were corrected for the model's observed biases in contemporary biome-average values. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux was 70 to 80% lower at the LGM than in PI time. LGM climate with pre-industrial CO2 (280 ppm) however yielded unrealistic results, with global and Northern Hemisphere biomass burning fluxes greater than in the pre-industrial climate. Using the PI CO2 concentration increased the modelled LGM biomass burning fluxes for all climate models and latitudinal bands to between four and ten times their values under LGM CO2 concentration. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on productivity and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.


2011 ◽  
Vol 8 (4) ◽  
pp. 7595-7620 ◽  
Author(s):  
J. Jarsjö ◽  
S. M. Asokan ◽  
C. Prieto ◽  
A. Bring ◽  
G. Destouni

Abstract. This paper quantifies and conditions expected hydrological responses in the Aral Sea Drainage Basin (ASDB; occupying 1.3 % of the earth's land surface), Central Asia, to multi-model projections of climate change in the region from 20 general circulation models (GCMs). The aim is to investigate how uncertainties of future climate change interact with the effects of historic human re-distributions of water for land irrigation to influence future water fluxes and water resources. So far, historic irrigation changes have greatly amplified water losses by evapotranspiration (ET) in the ASDB, whereas the 20th century climate change has not much affected the regional net water loss to the atmosphere. Projected future climate change (for the period 2010–2039) however is here calculated to considerably increase the net water loss to the atmosphere. Furthermore, the ET response strength to any future temperature change will be further increased by maintained (or increased) irrigation practices. With such irrigation practices, the river runoff is likely to decrease to near-total depletion, with risk for cascading ecological regime shifts in aquatic ecosystems downstream of irrigated land areas. Without irrigation, the agricultural areas of the principal Syr Darya river basin could sustain a 50 % higher temperature increase (of 2.3 °C instead of the projected 1.5 °C until 2010–2039) before yielding the same consumptive ET increase and associated R decrease as with the present irrigation practices.


2020 ◽  
Author(s):  
Carola Martens ◽  
Thomas Hickler ◽  
Claire Davis-Reddy ◽  
Francois Engelbrecht ◽  
Steven I. Higgins ◽  
...  

<p>Climate change is expected to cause vegetation change in Africa, with profound impacts on ecosystems and biodiversity. Projections of future ecosystem states are constrained by uncertainties regarding relative impacts of climate change and CO<sub>2</sub> fertilisation effects. Rising atmospheric CO<sub>2</sub> drives climate change, but also directly affects plant physiological functions via carbon uptake, carbon allocation, water use efficiency, and growth. We use the adaptive Dynamic Global Vegetation Model (aDGVM) to quantify uncertainties in projected African vegetation until 2099. High-resolution climate forcing for the aDGVM, was generated by regional climate modelling. An ensemble of 24 aDGVM simulations based on six downscaled General Circulation Models (GCMs) under two Representative Concentration Pathways (RCPs 4.5 and 8.5) with plant-physiological CO<sub>2</sub> effects enabled and disabled was implemented.</p><p>Under strong climatic change with high CO<sub>2</sub> increases (RCP 8.5), almost a third of terrestrial Africa is projected to experience biome changes with woody encroachment into grassy biomes dominating biome changes. Projections under medium-impact scenarios (RCP 4.5) still predict biome changes for around a quarter of Africa. With climate change only and elevated-CO<sub>2</sub> effects disabled, woody encroachment is weak and reduction of forest cover in favour of savannas prevails. Change in aboveground vegetation carbon until 2099 varied from a strong increase under elevated CO<sub>2 </sub>(61.5%, RCP 8.5; 33.9%, RCP 4.5) to a small increase of 5.4% (RCP 4.5) and a decrease of -13.6% (RCP 8.5) without CO<sub>2</sub> effects.</p><p>CO<sub>2</sub> effects in combination with RCP scenarios caused the greatest uncertainty in projected ecosystem changes. Downscaled GCM projections caused weaker uncertainties in the simulations. Future biome changes due to climate and CO<sub>2</sub> change are therefore likely in large parts of Africa. Their magnitude and location often remain uncertain. Climate mitigation and adaptation response measures that rely upon vegetation-derived ecosystem services will need to account for alternative climate futures.</p>


2017 ◽  
Vol 30 (12) ◽  
pp. 4527-4545 ◽  
Author(s):  
F. Hugo Lambert ◽  
Angus J. Ferraro ◽  
Robin Chadwick

A compositing scheme that predicts changes in tropical precipitation under climate change from changes in near-surface relative humidity (RH) and temperature is presented. As shown by earlier work, regions of high tropical precipitation in general circulation models (GCMs) are associated with high near-surface RH and temperature. Under climate change, it is found that high precipitation continues to be associated with the highest surface RH and temperatures in most CMIP5 GCMs, meaning that it is the “rank” of a given GCM grid box with respect to others that determines how much precipitation falls rather than the absolute value of surface temperature or RH change, consistent with the weak temperature gradient approximation. Further, it is demonstrated that the majority of CMIP5 GCMs are close to a threshold near which reductions in land RH produce large reductions in the RH ranking of some land regions, causing reductions in precipitation over land, particularly South America, and compensating increases over ocean. Recent work on predicting future changes in specific humidity allows the prediction of the qualitative sense of precipitation change in some GCMs when land surface humidity changes are unknown. However, the magnitudes of predicted changes are too small. Further study, perhaps into the role of radiative and land–atmosphere feedbacks, is necessary.


2020 ◽  
Author(s):  
Yunhe Yin ◽  
Danyang Ma ◽  
Shaohong Wu

<p>Variations in forest net primary productivity (NPP) reflects the combined effects of key climate variables on ecosystem structure and function, especially on the carbon cycle. We performed risk analysis indicated by the magnitude of future negative anomalies in NPP in comparison with the natural interannual variability to investigate the impact of future climatic projections on forests in China. The analysis was conducted mainly based on modifying the Lund–Potsdam–Jena Dynamic Global Vegetation Model, which was driven by five general circulation models (GCMs) simulations. Results from the multi-model ensemble showed that climate change risk of decreases in forest NPP would be more significant in higher emission scenario in China. Under relatively low emission scenarios, the total area of risk was predicted to decline, while for RCP8.5, it was predicted to first decrease and then increase after the middle of 21st century. The rapid temperature increases predicted under the RCP8.5 scenario would be probably unfavorable for forest vegetation growth in the long term. High-level risk area was likely to increase except RCP2.6. The percentage area at high risk was predicted to increase from 5.39% (2021–2050) to 27.62% (2071–2099) under RCP8.5. Climate change risk to forests was mostly concentrated in southern subtropical and tropical regions, generally significant under high emission scenario of RCP8.5, which was mainly attributed to the intensified dryness in south China.</p>


2017 ◽  
Vol 21 (3) ◽  
pp. 1455-1475 ◽  
Author(s):  
Matthieu Guimberteau ◽  
Philippe Ciais ◽  
Agnès Ducharne ◽  
Juan Pablo Boisier ◽  
Ana Paula Dutra Aguiar ◽  
...  

Abstract. Deforestation in Amazon is expected to decrease evapotranspiration (ET) and to increase soil moisture and river discharge under prevailing energy-limited conditions. The magnitude and sign of the response of ET to deforestation depend both on the magnitude and regional patterns of land-cover change (LCC), as well as on climate change and CO2 levels. On the one hand, elevated CO2 decreases leaf-scale transpiration, but this effect could be offset by increased foliar area density. Using three regional LCC scenarios specifically established for the Brazilian and Bolivian Amazon, we investigate the impacts of climate change and deforestation on the surface hydrology of the Amazon Basin for this century, taking 2009 as a reference. For each LCC scenario, three land surface models (LSMs), LPJmL-DGVM, INLAND-DGVM and ORCHIDEE, are forced by bias-corrected climate simulated by three general circulation models (GCMs) of the IPCC 4th Assessment Report (AR4). On average, over the Amazon Basin with no deforestation, the GCM results indicate a temperature increase of 3.3 °C by 2100 which drives up the evaporative demand, whereby precipitation increases by 8.5 %, with a large uncertainty across GCMs. In the case of no deforestation, we found that ET and runoff increase by 5.0 and 14 %, respectively. However, in south-east Amazonia, precipitation decreases by 10 % at the end of the dry season and the three LSMs produce a 6 % decrease of ET, which is less than precipitation, so that runoff decreases by 22 %. For instance, the minimum river discharge of the Rio Tapajós is reduced by 31 % in 2100. To study the additional effect of deforestation, we prescribed to the LSMs three contrasted LCC scenarios, with a forest decline going from 7 to 34 % over this century. All three scenarios partly offset the climate-induced increase of ET, and runoff increases over the entire Amazon. In the south-east, however, deforestation amplifies the decrease of ET at the end of dry season, leading to a large increase of runoff (up to +27 % in the extreme deforestation case), offsetting the negative effect of climate change, thus balancing the decrease of low flows in the Rio Tapajós. These projections are associated with large uncertainties, which we attribute separately to the differences in LSMs, GCMs and to the uncertain range of deforestation. At the subcatchment scale, the uncertainty range on ET changes is shown to first depend on GCMs, while the uncertainty of runoff projections is predominantly induced by LSM structural differences. By contrast, we found that the uncertainty in both ET and runoff changes attributable to uncertain future deforestation is low.


2017 ◽  
Author(s):  
Amanda Frigola ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. The Middle Miocene Climate Transition was characterized by major Antarctic ice-sheet expansion and global cooling during the interval ~ 15–13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry and vegetation. Additionally, Antarctic ice volume and geometry, sea-level and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.


2007 ◽  
Vol 3 (3) ◽  
pp. 499-512 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of 25 General Circulation Models run for the mid-Holocene period (6 ka BP) with a set of palaeoclimate reconstructions based on over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) similar patterns of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The models were compared by the magnitude and direction of climate change within the region as well as the spatial pattern of these changes. The majority of the models are grouped together, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, although the models are unable to reproduce the exact patterns of change, they all produce the correct signs of change observed for the mid-Holocene.


Sign in / Sign up

Export Citation Format

Share Document