scholarly journals Effects of environmental and management factors on worldwide maize and soybean yields over the 20<sup>th</sup> and 21<sup>st</sup> centuries

2020 ◽  
Author(s):  
Tzu-Shun Lin ◽  
Yang Song ◽  
Atul K. Jain ◽  
Peter Lawrence ◽  
Haroon S. Kheshgi

Abstract. The land process model, ISAM, is extended to accurately simulate contemporary soybean and maize crop yields, and estimate changes in yield over the period 1901–2100 driven by past and future changes in environmental factors – atmospheric CO2 level ([CO2]) and climate (temperature and precipitation) – and management factors – nitrogen fertilizer and deposition, irrigation, and crop harvest areas. Over the 20th century, each of these factors contributes to the increase in global crop yield with increasing nitrogen fertilizer application the strongest of these drivers for maize and increasing [CO2] the strongest for soybean. Over the 21st century, two future scenarios – RCP4.5-SSP2 and RCP8.5-SSP5 – of the environmental and management factors are modeled to estimate their influence on future crop yield. For both crops under both scenarios, changing climate drives yield lower, while rising [CO2] drives yield higher. For soybean, the negative climate effect is more than offset by the other drivers – particularly the increase in [CO2] – leading to an increase in global soybean yield by the 2090s. For maize, combined negative climate and harvest area effects are offset in RCP4.5-SSP2, which has continued growth in nitrogen fertilizer application, leaving global yield roughly unchanged. However, in RCP8.5-SSP5 maize yield declines since this scenario has greater warming of climate and weaker nitrogen fertilizer application than RCP4.5-SSP2. The model also projects differences between geographical regions; notably, higher temperatures in tropical regions limit photosynthesis rates and reduce light interception by accelerating phenological development in both crops, particularly for RCP8.5-SSP5 and for soybean.

2021 ◽  
Vol 1 (1) ◽  
pp. 39-43
Author(s):  
Gunawan Budiyanto ◽  
Mulyono Mulyono ◽  
Fiyoni Dwi Setyawan

A research to study the effects of Zeolite and nitrogen fertilizer application on vegetative growth of maize crop in coastal sandy soil was conducted on the research field of Agriculture Faculty, Muhammadiyah University of Yogyakarta at Tamantirto, Bantul District of Yogyakarta during October until February, 2003. This research was aimed on the study of Zeolite application in order to enhance the nitrogen uptake in the coastal sandy soil, and its effects on vegetative growth of CP I variety of maize. The pot experiment was arranged in 7 x 3 factorial completely randomized design, with 4 replications. The first factor was Zeolite dosage consisted of 7 levels, i.e:  0, 3, 4, 5, 6, 7, and 8 %; and the second one was 3 levels nitrogen fertilizer dosage which consisted of: 75, 110, and 145 kg/ ha. The nitrogen fertilizer was applied on the medium mixed with Zeolite granules. Observations on plant height, stem diemeter, leaves number, plant fresh and dry weight were done during the vegetative growth of maize. The results showed that Zeolite application significantly enhanced the vegetative growth of CPI maize. The 5,2  - 5,6  % Zeolite was optimum to gave the maximum growth of maize crop. Nitrogen fertilizer application was also significantly increased the plant height and biomass weight, and the 145 kg/ha was the optimum dosage. There was no interaction between Zeolite and nitrogen fertilizer application in order to affected the maize growth.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 843
Author(s):  
Qaisar Saddique ◽  
Muhammad Imran Khan ◽  
Muhammad Habib ur Rahman ◽  
Xu Jiatun ◽  
Muhammad Waseem ◽  
...  

The ongoing global warming and changing patterns of precipitation have significant implications for crop yields. Process-based models are the most commonly used method to assess the impacts of projected climate changes on crop yields. In this study, the crop-environment resource synthesis (CERES)-Maize 4.6.7 model was used to project the maize crop yield in the Shaanxi Province of China over future periods. In this context, the downscaled ensemble projections of 17 general circulation models (GCMs) under four representative concentration pathways (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) were used as input for the calibrated CERES-Maize model. Results showed a negative correlation between temperature and maize yield in the study area. It is expected that each 1.0 °C rise in seasonal temperature will cause up to a 9% decrease in the yield. However, the influence of CO2 fertilization showed a positive response, as witnessed by the increase in the crop yield. With CO2 fertilization, the average increase in the maize crop yield compared to without CO2 fertilization per three decades was 10.5%, 11.6%, TA7.8%, and 6.5% under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively. An elevated CO2 concentration showed a pronounced positive impact on the rain-fed maize yield compared to the irrigated maize yield. The average water use efficiency (WUE) was better at elevated CO2 concentrations and improved by 7–21% relative to the without CO2 fertilization of the WUE. Therefore, future climate changes with elevated CO2 are expected to be favorable for maize yields in the Shaanxi Province of China, and farmers can expect further benefits in the future from growing maize.


2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Iriwi Louisa S. Sinon

<p><em>Study dendrochronology or tree-ring dating is defined as the study of chronological sequence of annual growth rings in trees. Teak (Tectona grandis) is one of various tree species that has been identified for the use of tree-ring studies in tropical regions. Teak is found to be suitable for dendrochronology as it is long-lived and develops defined annual growth rings. In Java, teak cans growth naturally or intensively in plantation. The two silviculture conditions will give different sensitivity on climate effect. Therefore, the effect of silviculturer will on natural teak and plantation teak in Saradan, Madiun, and East Java. As a part of the study, ten core samples from natural- growth teak were measured. The samples of growth rings is spanned from 1832 – 2004. Using the COFECHA program, the correlation of the samples (r) was found to be 0.44 point, which is satisfactory to the standard used in dendrochronology. Thus, from this study it can be concluded that natural teak could still be used in dendrochronology, although the sensitivity are not as high as plantation teak. </em></p>


2012 ◽  
pp. 102-109
Author(s):  
Suzana Kristek ◽  
Andrija Kristek ◽  
Dragana Kocevski ◽  
Antonija K. Jankovi ◽  
Dražen Juriši

The experiment was set up on two types of the soil: Mollic Gleysols (FAO, 1998) and Eutric Cambisols where the presence of pathogenic fungi – sugar beet root decay agent – Rhizoctonia solani has been detected since 2005. In a two year study (2008, 2009), the experiment was set up by completely randomized block design in 4 repetitions and 16 different variants. Two beet varieties, Belinda, sensitive to pathogenic fungi R. solani, and Laetitia, tolerant to pathogenic fungi R. solani), were grown. The microbiological preparation BactoFil was applied in different amounts in autumn and spring. In addition, the nitrogen fertilizer application, based on the results of soil analysis, was varied. The following parameters were tested: amount of infected and decayed plants, root yield, sugar content, sugar in molasses and sugar yield. The best results were obtained by applying the microbiological preparation BactoFil, and by 30% reduced nitrogen fertilizer application. Preparation dosage and time of application depended on soil properties.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


Sign in / Sign up

Export Citation Format

Share Document