scholarly journals Turbulence in a coastal Mediterranean area: surface fluxes and related parameters at Castel Porziano, Italy

2009 ◽  
Vol 6 (2) ◽  
pp. 3355-3372 ◽  
Author(s):  
S. A. Cieslik ◽  
G. Gerosa ◽  
A. Finco ◽  
G. Matteucci ◽  
N. Cape ◽  
...  

Abstract. During the ACCENT/VOCBAS measuring campaign conducted at Castel Porziano, Italy over a Mediterranean macchia ecosystem located near the coastline, a series of micrometeorological observations were made. Sensible and latent heat fluxes, as well as ozone fluxes, are presented. The behaviour of the main meteorological variables such as temperature, humidity, wind speed and direction, is analysed.

2008 ◽  
Vol 136 (11) ◽  
pp. 4373-4397 ◽  
Author(s):  
Agata Moscatello ◽  
Mario Marcello Miglietta ◽  
Richard Rotunno

Abstract The presence of a subsynoptic-scale vortex over the Mediterranean Sea in southeastern Italy on 26 September 2006 has been recently documented by the authors. The transit of the cyclone over land allowed an accurate diagnosis of the structure of the vortex, based on radar and surface station data, showing that the cyclone had features similar to those observed in tropical cyclones. To investigate the cyclone in greater depth, numerical simulations have been performed using the Weather Research and Forecasting (WRF) model, set up with two domains, in a two-way-nested configuration. Model simulations are able to properly capture the timing and intensity of the small-scale cyclone. Moreover, the present simulated cyclone agrees with the observational analysis of this case, identifying in this small-scale depression the typical characteristics of a Mediterranean tropical-like cyclone. An analysis of the mechanisms responsible for the genesis, development, and maintenance of the cyclone has also been performed. Sensitivity experiments show that cyclogenesis on the lee side of the Atlas Mountains is responsible for the generation of the cyclone. Surface sensible and latent heat fluxes become important during the subsequent phase of development in which the lee-vortex shallow depression evolved as it moved toward the south of Sicily. During this phase, the latent heating, associated with convective motions triggered by a cold front entering the central Mediterranean area, was important for the intensification and contraction of the horizontal scale of the vortex. The small-scale cyclone subsequently deepened as it moved over the Ionian Sea and then maintained its intensity during its later transit over the Adriatic Sea; in this later stage, latent heat release continued to play a major role in amplifying and maintaining the vortex, while the importance of the surface fluxes diminished.


2021 ◽  
Author(s):  
Eric Maloney ◽  
Hien Bui ◽  
Emily Riley Dellaripa ◽  
Bohar Singh

<p>This study analyzes wind speed and surface latent heat flux anomalies from the Cyclone Global Navigation Satellite System (CYGNSS), aiming to understand the physical mechanisms regulating intraseasonal convection, particularly associated with the Madden-Julian oscillation (MJO). The importance of wind-driven surface flux variability for supporting east Pacific diurnal convective disturbances during boreal summer is also examined. An advantage of CYGNSS compared to other space-based datasets is that its surface wind speed retrievals have reduced attenuation by precipitation, thus providing improved information about the importance of wind-induced surface fluxes for the maintenance of convection. Consistent with previous studies from buoys, CYGNSS shows that enhanced MJO precipitation is associated with enhanced wind speeds, and that associated surface heat fluxes anomalies have a magnitude about 7%-12% of precipitation anomalies. Thus, latent heat flux anomalies are an important maintenance mechanism for MJO convection through the column moist static energy budget. A composite analysis during boreal summer over the eastern north Pacific also supports the idea that wind-induced surface flux is important for MJO maintenance there. We also show the surface fluxes help moisten the atmosphere in advance of diurnal convective disturbances that propagate offshore from the Colombian Coast during boreal summer, helping to sustain such convection.  </p>


2021 ◽  
Vol 13 (7) ◽  
pp. 1335
Author(s):  
Ronald Souza ◽  
Luciano Pezzi ◽  
Sebastiaan Swart ◽  
Fabrício Oliveira ◽  
Marcelo Santini

The Brazil–Malvinas Confluence (BMC) is one of the most dynamical regions of the global ocean. Its variability is dominated by the mesoscale, mainly expressed by the presence of meanders and eddies, which are understood to be local regulators of air-sea interaction processes. The objective of this work is to study the local modulation of air-sea interaction variables by the presence of either a warm (ED1) and a cold core (ED2) eddy, present in the BMC, during September to November 2013. The translation and lifespans of both eddies were determined using satellite-derived sea level anomaly (SLA) data. Time series of satellite-derived surface wind data, as well as these and other meteorological variables, retrieved from ERA5 reanalysis at the eddies’ successive positions in time, allowed us to investigate the temporal modulation of the lower atmosphere by the eddies’ presence along their translation and lifespan. The reanalysis data indicate a mean increase of 78% in sensible and 55% in latent heat fluxes along the warm eddy trajectory in comparison to the surrounding ocean of the study region. Over the cold core eddy, on the other hand, we noticed a mean reduction of 49% and 25% in sensible and latent heat fluxes, respectively, compared to the adjacent ocean. Additionally, a field campaign observed both eddies and the lower atmosphere from ship-borne observations before, during and after crossing both eddies in the study region during October 2013. The presence of the eddies was imprinted on several surface meteorological variables depending on the sea surface temperature (SST) in the eddy cores. In situ oceanographic and meteorological data, together with high frequency micrometeorological data, were also used here to demonstrate that the local, rather than the large scale forcing of the eddies on the atmosphere above, is, as expected, the principal driver of air-sea interaction when transient atmospheric systems are stable (not actively varying) in the study region. We also make use of the in situ data to show the differences (biases) between bulk heat flux estimates (used on atmospheric reanalysis products) and eddy covariance measurements (taken as “sea truth”) of both sensible and latent heat fluxes. The findings demonstrate the importance of short-term changes (minutes to hours) in both the atmosphere and the ocean in contributing to these biases. We conclude by emphasizing the importance of the mesoscale oceanographic structures in the BMC on impacting local air-sea heat fluxes and the marine atmospheric boundary layer stability, especially under large scale, high-pressure atmospheric conditions.


2019 ◽  
Vol 77 (3) ◽  
pp. 1081-1100 ◽  
Author(s):  
Neil P. Lareau

Abstract Doppler and Raman lidar observations of vertical velocity and water vapor mixing ratio are used to probe the physics and statistics of subcloud and cloud-base latent heat fluxes during cumulus convection at the ARM Southern Great Plains (SGP) site in Oklahoma, United States. The statistical results show that latent heat fluxes increase with height from the surface up to ~0.8Zi (where Zi is the convective boundary layer depth) and then decrease to ~0 at Zi. Peak fluxes aloft exceeding 500 W m−2 are associated with periods of increased cumulus cloud cover and stronger jumps in the mean humidity profile. These entrainment fluxes are much larger than the surface fluxes, indicating substantial drying over the 0–0.8Zi layer accompanied by moistening aloft as the CBL deepens over the diurnal cycle. We also show that the boundary layer humidity budget is approximately closed by computing the flux divergence across the 0–0.8Zi layer. Composite subcloud velocity and water vapor anomalies show that clouds are linked to coherent updraft and moisture plumes. The moisture anomaly is Gaussian, most pronounced above 0.8Zi and systematically wider than the velocity anomaly, which has a narrow central updraft flanked by downdrafts. This size and shape disparity results in downdrafts characterized by a high water vapor mixing ratio and thus a broad joint probability density function (JPDF) of velocity and mixing ratio in the upper CBL. We also show that cloud-base latent heat fluxes can be both positive and negative and that the instantaneous positive fluxes can be very large (~10 000 W m−2). However, since cloud fraction tends to be small, the net impact of these fluxes remains modest.


2014 ◽  
Vol 11 (16) ◽  
pp. 4507-4519 ◽  
Author(s):  
T. S. El-Madany ◽  
H. F. Duarte ◽  
D. J. Durden ◽  
B. Paas ◽  
M. J. Deventer ◽  
...  

Abstract. Sodar (SOund Detection And Ranging), eddy-covariance, and tower profile measurements of wind speed and carbon dioxide were performed during 17 consecutive nights in complex terrain in northern Taiwan. The scope of the study was to identify the causes for intermittent turbulence events and to analyze their importance in nocturnal atmosphere–biosphere exchange as quantified with eddy-covariance measurements. If intermittency occurs frequently at a measurement site, then this process needs to be quantified in order to achieve reliable values for ecosystem characteristics such as net ecosystem exchange or net primary production. Fourteen events of intermittent turbulence were identified and classified into above-canopy drainage flows (ACDFs) and low-level jets (LLJs) according to the height of the wind speed maximum. Intermittent turbulence periods lasted between 30 and 110 min. Towards the end of LLJ or ACDF events, positive vertical wind velocities and, in some cases, upslope flows occurred, counteracting the general flow regime at nighttime. The observations suggest that the LLJs and ACDFs penetrate deep into the cold air pool in the valley, where they experience strong buoyancy due to density differences, resulting in either upslope flows or upward vertical winds. Turbulence was found to be stronger and better developed during LLJs and ACDFs, with eddy-covariance data presenting higher quality. This was particularly indicated by spectral analysis of the vertical wind velocity and the steady-state test for the time series of the vertical wind velocity in combination with the horizontal wind component, the temperature, and carbon dioxide. Significantly higher fluxes of sensible heat, latent heat, and shear stress occurred during these periods. During LLJs and ACDFs, fluxes of sensible heat, latent heat, and CO2 were mostly one-directional. For example, exclusively negative sensible heat fluxes occurred while intermittent turbulence was present. Latent heat fluxes were mostly positive during LLJs and ACDFs, with a median value of 34 W m−2, while outside these periods the median was 2 W m−2. In conclusion, intermittent turbulence periods exhibit a strong impact on nocturnal energy and mass fluxes.


2015 ◽  
Vol 8 (12) ◽  
pp. 10783-10841
Author(s):  
A. Loew ◽  
J. Peng ◽  
M. Borsche

Abstract. Surface water and energy fluxes are essential components of the Earth system. Surface latent heat fluxes provide major energy input to the atmosphere. Despite the importance of these fluxes, state-of-the-art datasets of surface energy and water fluxes largely differ. The present paper introduces a new framework for the estimation of surface energy and water fluxes at the land surface, which allows for temporally and spatially high resolved flux estimates at the global scale (HOLAPS). The framework maximizes the usage of existing long-term satellite data records and ensures internally consistent estimates of the surface radiation and water fluxes. The manuscript introduces the technical details of the developed framework and provides results of a comprehensive sensitivity and evaluation study. Overall the results indicate very good agreement with in situ observations when compared against 49 FLUXNET stations worldwide. Largest uncertainties of latent heat flux and net radiation were found to result from uncertainties in the global solar radiation flux obtained from satellite data products.


2013 ◽  
Vol 17 (14) ◽  
pp. 1-22 ◽  
Author(s):  
Allison L. Steiner ◽  
Dori Mermelstein ◽  
Susan J. Cheng ◽  
Tracy E. Twine ◽  
Andrew Oliphant

Abstract Atmospheric aerosols scatter and potentially absorb incoming solar radiation, thereby reducing the total amount of radiation reaching the surface and increasing the fraction that is diffuse. The partitioning of incoming energy at the surface into sensible heat flux and latent heat flux is postulated to change with increasing aerosol concentrations, as an increase in diffuse light can reach greater portions of vegetated canopies. This can increase photosynthesis and transpiration rates in the lower canopy and potentially decrease the ratio of sensible to latent heat for the entire canopy. Here, half-hourly and hourly surface fluxes from six Flux Network (FLUXNET) sites in the coterminous United States are evaluated over the past decade (2000–08) in conjunction with satellite-derived aerosol optical depth (AOD) to determine if atmospheric aerosols systematically influence sensible and latent heat fluxes. Satellite-derived AOD is used to classify days as high or low AOD and establish the relationship between aerosol concentrations and the surface energy fluxes. High AOD reduces midday net radiation by 6%–65% coupled with a 9%–30% decrease in sensible and latent heat fluxes, although not all sites exhibit statistically significant changes. The partitioning between sensible and latent heat varies between ecosystems, with two sites showing a greater decrease in latent heat than sensible heat (Duke Forest and Walker Branch), two sites showing equivalent reductions (Harvard Forest and Bondville), and one site showing a greater decrease in sensible heat than latent heat (Morgan–Monroe). These results suggest that aerosols trigger an ecosystem-dependent response to surface flux partitioning, yet the environmental drivers for this response require further exploration.


2011 ◽  
Vol 68 (7) ◽  
pp. 1435-1445 ◽  
Author(s):  
Edgar L Andreas

Abstract Mesoscale and large-scale atmospheric models use a bulk surface flux algorithm to compute the turbulent flux boundary conditions at the bottom of the atmosphere from modeled mean meteorological quantities such as wind speed, temperature, and humidity. This study, on the other hand, uses a state-of-the-art bulk air–sea flux algorithm in stand-alone mode to compute the surface fluxes of momentum, sensible and latent heat, and enthalpy for a wide range of typical (though randomly generated) meteorological conditions over the open ocean. The flux algorithm treats both interfacial transfer (controlled by molecular processes right at the air–sea interface) and transfer mediated by sea spray. Because these two transfer routes obey different scaling laws, neutral-stability, 10-m transfer coefficients for enthalpy CKN10, latent heat CEN10, and sensible heat CHN10 are quite varied when calculated from the artificial flux data under the assumption of only interfacial transfer—the assumption in almost all analyses of measured air–sea fluxes. That variability increases with wind speed because of increasing spray-mediated transfer and also depends on surface temperature and atmospheric stratification. The analysis thereby reveals as fallacious several assumptions that are common in air–sea interaction research—especially in high winds. For instance, CKN10, CEN10, and CHN10 are not constants; they are not even single-valued functions of wind speed, nor must they increase monotonically with wind speed if spray-mediated transfer is important. Moreover, the ratio CKN10/CDN10, where CDN10 is the neutral-stability, 10-m drag coefficient, does not need to be greater than 0.75 at all wind speeds, as many have inferred from Emanuel’s seminal paper in this journal. Data from the literature and from the Coupled Boundary Layers and Air–Sea Transfer (CBLAST) hurricane experiment tend to corroborate these results.


2006 ◽  
Vol 6 (3) ◽  
pp. 5251-5268
Author(s):  
G. B. Raga ◽  
S. Abarca

Abstract. We present estimates of turbulent fluxes of heat and momentum derived from low level (~30 m) aircraft measurements over the tropical Eastern Pacific and provide empirical relationships that are valid under high wind speed conditions (up to 25 ms−1). The estimates of total momentum flux and turbulent kinetic energy can be represented very accurately (r2=0.99, when data are binned every 1 ms−1) by empirical fits with a linear and a cubic terms of the average horizontal wind speed. The latent heat flux shows a strong quadratic dependence on the horizontal wind speed and a linear relationship with the difference between the air specific humidity and the saturated specific humidity at the sea surface, explaining 96% of the variance. The estimated values were used to evaluate the performance of three currently used parameterizations of turbulence fluxes, varying in complexity and computational requirements. The comparisons with the two more complex parameterizations show good agreement between the observed and parameterized latent heat fluxes, with less agreement in the sensible heat fluxes, and one of them largely overestimating the momentum fluxes. A third, very simple parameterization shows a surprisingly good agreement of the sensible heat flux, while momentum fluxes are again overestimated and a poor agreement was observed for the latent heat flux (r2=0.62). The performance of all three parameterizations deteriorates significantly in the high wind speed regime (above 10–15 ms−1). The dataset obtained over the tropical Eastern Pacific allows us to derive empirical functions for the turbulent fluxes that are applicable from 1 to 25 ms−1, which can be introduced in meteorological models under high wind conditions.


2020 ◽  
Vol 77 (9) ◽  
pp. 3211-3225
Author(s):  
Kristine F. Haualand ◽  
Thomas Spengler

Abstract The convoluted role of surface sensible and latent heat fluxes on moist baroclinic development demands a better understanding to disentangle their local and remote effects. Including diabatic effects in the Eady model, the direct effects of surface fluxes on the diabatic generation of eddy available potential energy as well as their indirect effects through modifications of the circulation and latent heating are investigated. It is shown that surface sensible heat fluxes have a minor impact, irrespective of their position and parameterization, while latent heating in the region equivalent to the warm conveyor belt is the dominant diabatic source for development. Downward surface sensible heat fluxes in proximity of the warm conveyor belt results in structural modifications that increase the conversion from basic-state available potential energy to eddy available potential energy, while concomitantly weakening the ascent and hence latent heating. The detrimental effects are easily compensated through provision of additional moisture into the warm conveyor belt. Upward surface heat fluxes in the cold sector, on the other hand, are detrimental to growth. When downward (upward) surface sensible heat fluxes are located below the equivalent of the warm conveyor belt, the diabatically induced PV anomaly at the bottom of the latent heating layer becomes dominant (less dominant). Shifting the downward surface sensible heat fluxes away from the warm conveyor belt results in substantial changes in the growth rate, latent heat release, low-level structure, and energetics, where the effect of surface sensible heat fluxes might even be beneficial.


Sign in / Sign up

Export Citation Format

Share Document