scholarly journals 300 years of hydrological records and societal responses to droughts and floods on the Pacific coast of Central America

2018 ◽  
Vol 14 (2) ◽  
pp. 175-191 ◽  
Author(s):  
Alvaro Guevara-Murua ◽  
Caroline A. Williams ◽  
Erica J. Hendy ◽  
Pablo Imbach

Abstract. The management of hydrological extremes and impacts on society is inadequately understood because of the combination of short-term hydrological records, an equally short-term assessment of societal responses and the complex multi-directional relationships between the two over longer timescales. Rainfall seasonality and inter-annual variability on the Pacific coast of Central America is high due to the passage of the Inter Tropical Convergence Zone (ITCZ) and the El Niño–Southern Oscillation (ENSO). Here we reconstruct hydrological variability and demonstrate the potential for assessing societal impacts by drawing on documentary sources from the cities of Santiago de Guatemala (now Antigua Guatemala) and Guatemala de la Asunción (now Guatemala City) over the period from 1640 to 1945. City and municipal council meetings provide a rich source of information dating back to the beginning of Spanish colonisation in the 16th century. We use almost continuous sources from 1640 AD onwards, including > 190 volumes of Actas de Cabildo and Actas Municipales (minutes of meetings of the city and municipal councils) held by the Archivo Histórico de la Municipalidad de Antigua Guatemala (AHMAG) and the Archivo General de Centro América (AGCA) in Guatemala City. For this 305-year period (with the exception of a total of 11 years during which the books were either missing or damaged), information relating to Catholic rogation ceremonies and reports of flooding events and crop shortages were used to classify the annual rainy season (May to October) on a five-point scale from very wet to very dry. In total, 12 years of very wet conditions, 25 years of wetter than usual conditions, 34 years of drier conditions and 21 years of very dry conditions were recorded. An extended drier period from the 1640s to the 1740s was identified and two shorter periods (the 1820s and the 1840s) were dominated by dry conditions. Wetter conditions dominated the 1760s–1810s and possibly record more persistent La Niña conditions that are typically associated with higher precipitation over the Pacific coast of Central America. The 1640s–1740s dry period coincides with the Little Ice Age and the associated southward displacement of the ITCZ.

2017 ◽  
Author(s):  
Alvaro Guevara-Murua ◽  
Caroline A. Williams ◽  
Erica J. Hendy ◽  
Pablo Imbach

Abstract. The management of hydrological extremes and impacts on society is inadequately understood because of the combination of short-term hydrological records, an equally short-term assessment of societal responses and the complex multi-directional relationships between the two over longer timescales. Rainfall seasonality and interannual variability on the Pacific coast of Central America is high due to the passage of the Inter Tropical Convergence Zone (ITCZ) and large-scale phenomena El Niño Southern Oscillation (ENSO). Here we reconstruct hydrological variability and the associated impacts drawing on documentary sources from the cities of Santiago de Guatemala (now Antigua Guatemala) and Guatemala de la Asunción (now Guatemala City) over the period from 1640 to 1945. Near continuous records of city and municipal council meetings provide a rich source of information dating back to the beginning of Spanish colonisation in the 16thC. Beginning in 1640, we use almost continuous sources, including > 190 volumes of Actas de Cabildo and Actas Municipales (minutes of meetings of the city and municipal councils) held by the Archivo Histórico de la Municipalidad de Antigua Guatemala (AHMAG) and the Archivo General de Centro América (AGCA) in Guatemala City. For this 305-year period (with the exception of a total of 11 years where the books were either missing or damaged), information relating to Catholic rogation ceremonies and reports of flooding events and crop shortages, were used to classify the annual rainy season (May to October) on a 5 point scale from very wet to very dry. In total 12 years of very wet conditions, 25 years of wetter than usual conditions, 34 years of drier conditions and 21 years of very dry conditions were identified. An extended drier period from the 1640s to the 1740s was identified as well as two shorter periods (the 1820s and the 1840s) dominated by dry conditions. Wetter conditions dominated the 1760s–1810s, possibly coincident with reconstructions of more persistent La Niña conditions that are typically associated with higher precipitation over the Pacific Coast of Central America. The 1640s–1740s dry period coincides with the onset of the Little Ice Age and the associated southward displacement of the ITCZ.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3168
Author(s):  
Alejandra Morales Mérida ◽  
Aude Helier ◽  
Adriana A. Cortés-Gómez ◽  
Marc Girondot

In marine turtles, sex is determined during a precise period during incubation: males are produced at lower temperatures and females at higher temperatures, a phenomenon called temperature-dependent sex determination. Nest temperature depends on many factors, including solar radiation. Albedo is the measure of the proportion of reflected solar radiation, and in terms of sand color, black sand absorbs the most energy, while white sand reflects more solar radiation. Based on this observation, darker sand beaches with higher temperatures should produce more females. As marine turtles show a high degree of philopatry, including natal homing, dark beaches should also produce more female hatchlings that return to nest when mature. When sand color is heterogeneous in a region, we hypothesize that darker beaches would have the most nests. Nevertheless, the high incubation temperature on beaches with a low albedo may result in low hatching success. Using Google Earth images and the SWOT database of nesting olive ridleys (Lepidochelys olivacea) in the Pacific coast of Mexico and Central America, we modeled sand color and nesting activity to test the hypothesis that darker beaches host larger concentrations of females because of feminization on darker beaches and female philopatry. We found the opposite result: the lower hatching success at beaches with a lower albedo could be the main driver of nesting activity heterogeneity for olive ridleys in Central America.


2017 ◽  
Author(s):  
Imogen M. Browne ◽  
Christopher M. Moy ◽  
Christina R. Riesselman ◽  
Helen L. Neil ◽  
Lorelei G. Curtin ◽  
...  

Abstract. The Southern Hemisphere westerly winds (SHWW) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean on interannual to glacial-interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcity of paleoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene variability in the SHWW using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E), located in the modern centre of the westerly wind belt. Drainage basin response to variability in the strength of the SHWW at this latitude is reconstructed from downcore variations in magnetic susceptibility (MS) and bulk organic δ13C and atomic C/N, which monitor influxes of lithogenous and terrestrial vs marine organic matter, respectively. The hydrographic response to SHWW variability is reconstructed using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from ~ 1600–900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of vegetation response to climate at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand at the beginning of the Little Ice Age (LIA). Comparison with paleoclimate and paleoceanographic records from southern South America and the western Antarctic Peninsula indicates a late Holocene strengthening of the SHWW after ~ 1600 yr BP that appears to be broadly symmetrical across the Pacific basin, although our reconstruction suggests that this symmetry breaks down during the LIA. Contemporaneous increases in SHWW at localities either side of the Pacific in the late Holocene are likely controlled atmospheric teleconnections between the low and high latitudes and by variability in the Southern Annular Mode (SAM) and El Niño Southern Oscillation (ENSO).


1969 ◽  
Vol 39 (1) ◽  
pp. 32-40
Author(s):  
George N. Wolcott

The spiraea aphid, Aphis spiraecola Patch, which previous to 1924 was known only on species of Spiraea in the northern United States, in that year appeared in mass infestations on citrus trees in Florida and Cuba, causing enormous damage by distorting and resetting the young growth. By 1926 it had spread to Puerto Rico, attacking not only various endemic trees and plants, but being implicated in the transmission of a new virus disease of papaya. By 1928, it was reported on citrus from Honduras in Central America, and it has since dispersed to Costa Rica, and on a great variety of hosts to California, Oregon, and Washington on the Pacific Coast.


2021 ◽  
Author(s):  
John T Bruun ◽  
Katy Sheen ◽  
Mat Collins

<p>The Sahel is Northern African region between the equator and the Sahara desert. It is home to a belt of semi-arid grassland that stretches from the Atlantic and across the continent westward towards the Red Sea. The monsoon type rainfall season that occurs in this region is influenced by the way that moisture transport along this belt region combines along the Inter Tropical Convergence Zone (ITCZ). The Sahel is one of the most productive crop areas of Africa, and if the rains fail – it has long lasting implications for its community. Due to its  planetary location dry conditions pervade the Sahel for most of the year, with food production and livelihoods reliant on the summer monsoon rainy season between July and September. In this study we use (where available) up to 100 years of re-analysis records (GPCC rainfall, NCAR wind and HadiSST ocean data) together with an accurate signal decomposition approach (dominant frequency state analysis, DFSA). With this we assess how the teleconnection influence of the Pacific ENSO and the Atlantic dipole mechanisms influence the dry and wet Sahel rain conditions. The severe Sahelian drought of the 1980’s is shown to be a compounded sequence of drying dynamic effects that combined to occur suddenly over the span of 5-10 years. Our work indicates that dry and wet conditions appear to be related to land-air evaporation and condensation in the vicinity of the Sahel river catchments, with the land locked Lake Chad catchment having a particularly sensitive arid climate. Our latest finding’s help explain how the Atlantic and Pacific physical mechanism influence the Sahel monsoon and its extremes. With an assessment of agricultural data we also show how agricultural growth in the region is impacted by these factors. We present and discuss Africa dry and wet rainfall epoch forecasts over the next 30 years for Sahel based on stable and altered climate hysteresis scenarios.</p>


Zootaxa ◽  
2012 ◽  
Vol 3178 (1) ◽  
pp. 63
Author(s):  
TORE HØISÆTER

The Panamic biogeographic province has long been thought to harbour a rich pyramidellid fauna. In the compilation of Keen (1971) the family is second only to the Turridae in being the most speciose gastropod family in the region, and no less than 350 species are listed. However a number of these have later been recognized to be synonyms, and in the update of the compilation by Skoglund (2002) the number of pyramidellids was reduced to 258.


Author(s):  
Anno Faubel ◽  
Ronald Sluys ◽  
David G. Reid

A commensal relationship is described between the polyclad flatworm Paraprostatum echinolittorinae Faubel & Sluys gen. et sp. nov. and gastropod molluscs living on the Pacific coast of central America. Although the worms are relatively large in comparison with their hosts, the latter sustained no apparent damage. Considering the fact that the molluscs live in the upper eulittoral zone and littoral fringe of the shore, it is unlikely that the polyclads could survive for long outside the hosts. Diagnostic characters for the new genus and species are a long penial stylet joined to the proximal vesicle and absence of Lang's vesicle. It is pointed out that Aprostatum clippertoni Bock, 1913 and A. longipenis (Kato, 1943) have been incorrectly transferred to the genus Euplana Girard, 1893 and that Discoplana malagensis Doignon, Artois & Deheyn, 2003 should be transferred to the genus Ilyella Faubel, 1983.


2014 ◽  
Vol 14 (7) ◽  
pp. 1889-1903 ◽  
Author(s):  
B. Brizuela ◽  
A. Armigliato ◽  
S. Tinti

Abstract. Central America (CA), from Guatemala to Panama, has been struck by at least 52 tsunamis between 1539 and 2013, and in the extended region from Mexico to northern Peru (denoted as ECA, Extended Central America in this paper) the number of recorded tsunamis in the same time span is more than 100, most of which were triggered by earthquakes located in the Middle American Trench that runs parallel to the Pacific coast. The most severe event in the catalogue is the tsunami that occurred on 2 September 1992 off Nicaragua, with run-up measured in the range of 5–10 m in several places along the Nicaraguan coast. The aim of this paper is to assess the tsunami hazard on the Pacific coast of this extended region, and to this purpose a hybrid probabilistic-deterministic analysis is performed, that is adequate for tsunamis generated by earthquakes. More specifically, the probabilistic approach is used to compute the Gutenberg–Richter coefficients of the main seismic tsunamigenic zones of the area and to estimate the annual rate of occurrence of tsunamigenic earthquakes and their corresponding return period. The output of the probabilistic part of the method is taken as input by the deterministic part, which is applied to calculate the tsunami run-up distribution along the coast.


Sign in / Sign up

Export Citation Format

Share Document