scholarly journals Younger Dryas ice-margin retreat in Greenland, new evidence from Southwest Greenland

2020 ◽  
Author(s):  
Svend Funder ◽  
Anita H. L. Sørensen ◽  
Nicolaj K. Larsen ◽  
Anders Bjørk ◽  
Jason P. Briner ◽  
...  

Abstract. Cosmogenic 10Be dates from bedrock knobs on six outlying tiny islands along a stretch of 300 km of the Southwest Greenland coast, indicate that the Greenland Ice Sheet (GrIS) margin here was retreating on the inner shelf close to the coast during the Younger Dryas (YD) cold period. A survey of recently published 10Be and 14C-dated records show that this unexpected behaviour of the ice-margin has been seen also in other parts of Greenland, but with very large variations in extent and speed of retreat even between neighbouring areas. In contrast to this, landforms appearing in high resolution bathymetry surveys on the shelf, have recently been suggested to indicate YD readvance or long-lasting ice-margin still stand on mid shelf, far from the coast. However, these features have been dated primarily by correlation with cold periods in the ice core temperature records, and therefore cannot inform about the ice-margin/climate relation. Ice-margin retreat during a YD cooling has been explained by advection of warm subsurface water melting the ice-margin, and by increased seasonality of the climate with the temperature drop mainly in winter, with high impact on sea ice extent and duration, but little effect on glacier mass balance. This study therefore adds to the complexity of the climate/ice-margin relation, where local factors may for some time overrule or mute overall temperature change. It also points to the urgent need for climate-independent dating of the rich treasure trove of information coming from the shelf in these years.

2021 ◽  
Vol 17 (2) ◽  
pp. 587-601
Author(s):  
Svend Funder ◽  
Anita H. L. Sørensen ◽  
Nicolaj K. Larsen ◽  
Anders A. Bjørk ◽  
Jason P. Briner ◽  
...  

Abstract. To date the final stage in deglaciation of the Greenland shelf, when a contiguous ice sheet margin on the inner shelf transitioned to outlet glaciers in troughs with intervening ice-free areas, we generated cosmogenic 10Be dates from bedrock knobs on six outlying islands along a stretch of 300 km of the southwestern Greenland coast. Despite 10Be inheritance influencing some dates, the ages generally support a Greenland Ice Sheet (GrIS) margin that retreated off the inner shelf during the middle Younger Dryas (YD) period. Published 10Be- and 14C-dated records show that this history of the GrIS margin is seen in other parts of Greenland but with large variations in the extent and speed of retreat, sometimes even between neighbouring areas. Areas with a chronology extending into the Allerød period show no marked ice margin change at the Allerød–YD transition except in northernmost Greenland. In contrast, landforms on the shelf (moraines and grounding zone wedges) have been suggested to indicate YD readvances or long-lasting ice margin stillstands on the middle shelf. However, these features have been dated primarily by correlation with cold periods in the ice core temperature records. Ice margin retreat during the middle and late YD is explained by advection of warm subsurface water at the ice margin and by increased seasonality. Our results therefore point to the complexity of the climate–ice margin relation and to the urgent need for direct dating of the early deglaciation history of Greenland.


2017 ◽  
Vol 13 (1) ◽  
pp. 39-59 ◽  
Author(s):  
Olivia J. Maselli ◽  
Nathan J. Chellman ◽  
Mackenzie Grieman ◽  
Lawrence Layman ◽  
Joseph R. McConnell ◽  
...  

Abstract. Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750–2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.


2018 ◽  
Vol 14 (7) ◽  
pp. 969-990 ◽  
Author(s):  
James U. L. Baldini ◽  
Richard J. Brown ◽  
Natasha Mawdsley

Abstract. The Younger Dryas is considered the archetypal millennial-scale climate change event, and identifying its cause is fundamental for thoroughly understanding climate systematics during deglaciations. However, the mechanisms responsible for its initiation remain elusive, and both of the most researched triggers (a meltwater pulse or a bolide impact) are controversial. Here, we consider the problem from a different perspective and explore a hypothesis that Younger Dryas climate shifts were catalysed by the unusually sulfur-rich 12.880 ± 0.040 ka BP eruption of the Laacher See volcano (Germany). We use the most recent chronology for the GISP2 ice core ion dataset from the Greenland ice sheet to identify a large volcanic sulfur spike coincident with both the Laacher See eruption and the onset of Younger Dryas-related cooling in Greenland (i.e. the most recent abrupt Greenland millennial-scale cooling event, the Greenland Stadial 1, GS-1). Previously published lake sediment and stalagmite records confirm that the eruption's timing was indistinguishable from the onset of cooling across the North Atlantic but that it preceded westerly wind repositioning over central Europe by ∼ 200 years. We suggest that the initial short-lived volcanic sulfate aerosol cooling was amplified by ocean circulation shifts and/or sea ice expansion, gradually cooling the North Atlantic region and incrementally shifting the midlatitude westerlies to the south. The aerosol-related cooling probably only lasted 1–3 years, and the majority of Younger Dryas-related cooling may have been due to the sea-ice–ocean circulation positive feedback, which was particularly effective during the intermediate ice volume conditions characteristic of ∼ 13 ka BP. We conclude that the large and sulfur-rich Laacher See eruption should be considered a viable trigger for the Younger Dryas. However, future studies should prioritise climate modelling of high-latitude volcanism during deglacial boundary conditions in order to test the hypothesis proposed here.


2016 ◽  
Author(s):  
O. J. Maselli ◽  
N. J. Chellman ◽  
M. Grieman ◽  
L. Layman ◽  
J. R. McConnell ◽  
...  

Abstract. Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulphonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and NE Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750–2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back-trajectories to infer the likely source regions. A strong correlation between the low frequency MSA and bromine records during preindustrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.


2002 ◽  
Vol 35 ◽  
pp. 398-402 ◽  
Author(s):  
Irene A. Mogensen ◽  
Sigfüs J. Johnsen ◽  
Andrey Ganopolski ◽  
Stefan Rahmstorf

AbstractIn the search for abetter understanding of the dominant mechanisms of the Earth’s climate system, we present a study of rapid warm-climate transitions to Dansgaard– Oeschger events as seen in the ice cores from the Greenland ice sheet. We present a continuous δ18O record from the Greenland Icecore Project (GRIP) core with a resolution of 5 years until 50 kyr BP and of 20 years until 100 kyr BP. These data are compared with other high-resolution records, i.e. the Greenland Ice Sheet Project II (GISP2) chemistry record (25 years until 50 kyr BP) and the GRIP Ca2+ record (3 years until 100 kyr BP). All records have been transformed to the GISP2 Meese/Sowers time-scale. the high-resolution records are separated into interstadials and stadials, defined by the GRIP and GISP2 δ18O records. We examine in detail the transitions into the Dansgaard–Oeschger events, and propose a scenario for the changes that occur in the different ice-core records during the approximately 50 years the transition takes. Themain difference from previous studies is the much higher-resolution datasets available until 50 kyr BP; previous high-resolution studies by Taylor and others (1997) have focused on only the Younger Dryas/Preboreal transition. the data are compared to model simulations of the Dansgaard–Oeschger events performed with the CLIMBER-2 model of intermediate complexity (Petoukhov and others, 1998 ; Ganopolski and Rahmstorf, 2001).


1995 ◽  
Vol 43 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Eiliv Larsen ◽  
Hans Petter Sejrup ◽  
Sigfus J. Johnsen ◽  
Karen Luise Knudsen

AbstractThe climatic evolution during the Eemian and the Holocene in western Europe is compared with the sea-surface conditions in the Norwegian Sea and with the oxygen-isotope-derived paleotemperature signal in the GRIP and Renland ice cores from Greenland. The records show a warm phase (ca. 3000 yr long) early in the Eemian (substage 5e). This suggests that the Greenland ice sheet, in general, recorded the climate in the region during this time. Rapid fluctuations during late stage 6 and late substage 5e in the GRIP ice core apparently are not recorded in the climatic proxies from western Europe and the Norwegian Sea. This may be due to low resolution in the terrestrial and marine records and/or long response time of the biotic changes. The early Holocene climatic optimum recorded in the terrestrial and marine records in the Norwegian Sea-NW European region is not found in the Summit (GRIP and GISP2) ice cores. However, this warm phase is recorded in the Renland ice core. Due to the proximity of Renland to the Norwegian Sea, this area is probably more influenced by changes in polar front positions which may partly explain this discrepancy. A reduction in the elevation at Summit during the Holocene may, however, be just as important. The high-amplitude shifts during substage 5e in the GRIP core could be due to Atlantic water oscillating closer to, and also reaching, the coast of East Greenland. During the Holocene, Atlantic water was generally located farther east in the Norwegian Sea than during the Eemian.


1998 ◽  
Vol 27 ◽  
pp. 571-575 ◽  
Author(s):  
J. C. King ◽  
S. A. Harangozo

Temperature records from slations on the west roast of the Antarctic Peninsula show a very high level of interannual variability and, over the last 50 years, larger warming trends than are seen elsewhere in Antarctica. in this paper we investigate the role of atmospheric circulation variability and sea-ice extent variations in driving these changes. Owing to a lack of independent data, the reliability of Antarctic atmospheric analyses produced in the 1950s and 1960s cannot be readily established, but examination of the available data suggests that there has been an increase in the northerly component of the circulation over the Peninsula since the late 1950s. Few observations of sea-ice extent are available prior to 1973, but the limited data available indicate that the ice edge to the west of the Peninsula lay to the north of recently observed extremes during the very cold conditions prevailing in the late 1950s. The ultimate cause of the atmospheric-circulation changes remains to be determined and may lie outside the Antarctic region.


2016 ◽  
Vol 97 (1) ◽  
pp. 111-121 ◽  
Author(s):  
M. N. Raphael ◽  
G. J. Marshall ◽  
J. Turner ◽  
R. L. Fogt ◽  
D. Schneider ◽  
...  

Abstract The Amundsen Sea low (ASL) is a climatological low pressure center that exerts considerable influence on the climate of West Antarctica. Its potential to explain important recent changes in Antarctic climate, for example, in temperature and sea ice extent, means that it has become the focus of an increasing number of studies. Here, the authors summarize the current understanding of the ASL, using reanalysis datasets to analyze recent variability and trends, as well as ice-core chemistry and climate model projections, to examine past and future changes in the ASL, respectively. The ASL has deepened in recent decades, affecting the climate through its influence on the regional meridional wind field, which controls the advection of moisture and heat into the continent. Deepening of the ASL in spring is consistent with observed West Antarctic warming and greater sea ice extent in the Ross Sea. Climate model simulations for recent decades indicate that this deepening is mediated by tropical variability while climate model projections through the twenty-first century suggest that the ASL will deepen in some seasons in response to greenhouse gas concentration increases.


2017 ◽  
Vol 11 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Sentia Goursaud ◽  
Valérie Masson-Delmotte ◽  
Vincent Favier ◽  
Susanne Preunkert ◽  
Michel Fily ◽  
...  

Abstract. A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice-core chronology (1946–2006), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.8 ± 6.9 cm w.e. yr−1, local accumulation shows multi-decadal variations peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterised by a remarkably low and variable amplitude of the seasonal cycle. The ice-core records are compared with regional records of temperature, stake area accumulation measurements and variations in sea-ice extent, and outputs from two models nudged to ERA (European Reanalysis) atmospheric reanalyses: the high-resolution atmospheric general circulation model (AGCM), including stable water isotopes ECHAM5-wiso (European Centre Hamburg model), and the regional atmospheric model Modèle Atmosphérique Régional (AR). A significant linear correlation is identified between decadal variations in δ18O and regional temperature. No significant relationship appears with regional sea-ice extent. A weak and significant correlation appears with Dumont d'Urville wind speed, increasing after 1979. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an overestimation of the mean accumulation rate and its interannual variability, a strong cold bias and an underestimation of the mean δ18O value and its interannual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that the model resolution plays a key role along the Antarctic ice sheet coastal topography. Interannual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations and are used to refine the initial ice-core chronology within 2 years. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice-core record and the ECHAM5-wiso simulation in 1986 and 2002 (1998–1999), respectively. Despite uncertainties associated with post-deposition processes and signal-to-noise issues, in one single coastal ice-core record, we conclude that the S1C1 core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high-resolution ice-core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas. This is particularly important for the overall East Antarctic ice sheet mass balance.


2016 ◽  
Vol 12 (9) ◽  
pp. 1933-1948 ◽  
Author(s):  
Amaelle Landais ◽  
Valérie Masson-Delmotte ◽  
Emilie Capron ◽  
Petra M. Langebroek ◽  
Pepijn Bakker ◽  
...  

Abstract. The last interglacial period (LIG, ∼ 129–116 thousand years ago) provides the most recent case study of multimillennial polar warming above the preindustrial level and a response of the Greenland and Antarctic ice sheets to this warming, as well as a test bed for climate and ice sheet models. Past changes in Greenland ice sheet thickness and surface temperature during this period were recently derived from the North Greenland Eemian Ice Drilling (NEEM) ice core records, northwest Greenland. The NEEM paradox has emerged from an estimated large local warming above the preindustrial level (7.5 ± 1.8 °C at the deposition site 126 kyr ago without correction for any overall ice sheet altitude changes between the LIG and the preindustrial period) based on water isotopes, together with limited local ice thinning, suggesting more resilience of the real Greenland ice sheet than shown in some ice sheet models. Here, we provide an independent assessment of the average LIG Greenland surface warming using ice core air isotopic composition (δ15N) and relationships between accumulation rate and temperature. The LIG surface temperature at the upstream NEEM deposition site without ice sheet altitude correction is estimated to be warmer by +8.5 ± 2.5 °C compared to the preindustrial period. This temperature estimate is consistent with the 7.5 ± 1.8 °C warming initially determined from NEEM water isotopes but at the upper end of the preindustrial period to LIG temperature difference of +5.2 ± 2.3 °C obtained at the NGRIP (North Greenland Ice Core Project) site by the same method. Climate simulations performed with present-day ice sheet topography lead in general to a warming smaller than reconstructed, but sensitivity tests show that larger amplitudes (up to 5 °C) are produced in response to prescribed changes in sea ice extent and ice sheet topography.


Sign in / Sign up

Export Citation Format

Share Document