scholarly journals A millennial multi-proxy reconstruction of summer PDSI for Southern South America

2011 ◽  
Vol 7 (3) ◽  
pp. 957-974 ◽  
Author(s):  
É. Boucher ◽  
J. Guiot ◽  
E. Chapron

Abstract. We present the first spatially explicit field reconstruction of the summer (DJF) Palmer Drought Severity Index (PDSI) for the Southern Hemisphere. Our multi-proxy reconstruction focuses on Southern South America (SSA, south of 20° S) and is based on a novel spectral analogue method that aims at reconstructing low PDSI frequencies independently from higher frequencies. The analysis of past regimes and trends in extreme wet spells and droughts reveals considerable geographical and temporal variations over the last millennium in SSA. Although recent changes are in some cases notorious, most were not exceptional at the scale of the last thousand years. Our reconstruction highlights that low frequency water availability fluctuations in Patagonia were generally in antiphase with the rest of the subcontinent. Providing the fact that modern patterns of changes are transferable to the past, we show that such antiphases within SSA's hydroclimate could be attributed to the spatially contrasted response of summer PDSI to the Antarctic Oscillation (AAO). However, El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) signals are also embedded within the PDSI series during the 20th century. All these ocean-atmospheric forcings acted synergically, but the dominant influence appeared highly compartmentalized through space, highlighting clear AAO- (e.g. South Patagonia) and ENSO- (e.g. the Pampas) dominated regions. Our results therefore emphasize the complexity of water-availability fluctuations in SSA and their important dependence on external ocean-atmospheric forcings.

2011 ◽  
Vol 7 (1) ◽  
pp. 153-198
Author(s):  
É. Boucher ◽  
J. Guiot ◽  
E. Chapron

Abstract. We present the first highly resolved millennial reconstruction of the summer (DJF) Palmer Drought Severity Index (PDSI) for the Southern Hemisphere. Our multi-proxy reconstruction focuses on Southern South-America (SSA, south of 20° S) and is based on a novel spectral analogue method that aims at reconstructing the low frequencies of PDSI series independently from higher frequencies. The analysis of past regimes and long-term fluctuations in the PDSI reveals considerable geographical and temporal variations over the last millennia in SSA. Hence, recent changes, although some were very significant, were rarely exceptional over the last thousand years. However, from the point of view of extremes, recent PDSI values associated to extreme droughts (e.g. in the Andes) or wet spells (e.g. in the Pampas) were unequalled over the last thousand years. A major feature of our reconstruction is that it highlights that low frequency water availability fluctuations in Patagonia were generally in antiphase with those found on the rest of the sub-continent. We show that such antiphases within SSA's hydroclimate could be attributed the Antarctic Oscillation (AAO). The AAO was an important climatic driver during the calibration period (1930–1993) in SSA, and possibly over the last millennia as well. ENSO and PDO signals are also embedded, to a lesser extent, within the PDSI series, but the influence of these forcings has considerably varied through time and space over the last thousand years. Our results therefore highlight the complexity of water-availability fluctuations in SSA and their important dependence on external ocean-atmospheric forcings.


2019 ◽  
Vol 93 (06) ◽  
pp. 1088-1104
Author(s):  
María B. Santelli ◽  
Claudia J. del Río

AbstractThe Chilean species traditionally assigned to the genera Chlamys Röding, 1798 or Zygochlamys Ihering, 1907 are now placed in two new endemic South American taxa: Dietotenhosen n. gen. (middle Miocene–early middle Pliocene), to include the southeastern Pacific Ocean species D. hupeanus (Philippi, 1887) n. comb. and D. remondi (Philippi, 1887) n. comb., and Ckaraosippur n. gen. (earliest middle Miocene–Pliocene), for C. calderensis (Möricke, 1896) n. comb. (Chile) and C. camachoi n. sp. (Argentina). Both genera are the youngest survivors of the tribe Chlamydini in southern South America. None of them is related to the circumpolar genus Psychrochlamys Jonkers, 2003, and the previous proposal of the dispersal through the Antarctic Circumpolar Current for the species included herein in Dietotenhosen is rejected.UUID: http://zoobank.org/61b4bb50-321f-4b78-9069-609178ef0817


2020 ◽  
Vol 11 (1) ◽  
pp. 251-266 ◽  
Author(s):  
Paolo De Luca ◽  
Gabriele Messori ◽  
Robert L. Wilby ◽  
Maurizio Mazzoleni ◽  
Giuliano Di Baldassarre

Abstract. Multi-hazard events can be associated with larger socio-economic impacts than single-hazard events. Understanding the spatio-temporal interactions that characterize the former is therefore of relevance to disaster risk reduction measures. Here, we consider two high-impact hazards, namely wet and dry hydrological extremes, and quantify their global co-occurrence. We define these using the monthly self-calibrated Palmer Drought Severity Index based on the Penman–Monteith model (sc_PDSI_pm), covering the period 1950–2014, at 2.5∘ horizontal resolution. We find that the land areas affected by extreme wet, dry, and wet–dry events (i.e. geographically remote yet temporally co-occurring wet or dry extremes) are all increasing with time, the trends of which in dry and wet–dry episodes are significant (p value ≪ 0.01). The most geographically widespread wet–dry event was associated with the strong La Niña in 2010. This caused wet–dry anomalies across a land area of 21 million km2 with documented high-impact flooding and drought episodes spanning diverse regions. To further elucidate the interplay of wet and dry extremes at a grid cell scale, we introduce two new metrics: the wet–dry (WD) ratio and the extreme transition (ET) time intervals. The WD ratio measures the relative occurrence of wet or dry extremes, whereas ET quantifies the average separation time of hydrological extremes with opposite signs. The WD ratio shows that the incidence of wet extremes dominates over dry extremes in the USA, northern and southern South America, northern Europe, north Africa, western China, and most of Australia. Conversely, dry extremes are more prominent in most of the remaining regions. The median ET for wet to dry is ∼27 months, while the dry-to-wet median ET is 21 months. We also evaluate correlations between wet–dry hydrological extremes and leading modes of climate variability, namely the El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). We find that ENSO and PDO have a similar influence globally, with the former significantly impacting (p value < 0.05) a larger area (18.1 % of total sc_PDSI_pm area) compared to the latter (12.0 %), whereas the AMO shows an almost inverse pattern and significantly impacts the largest area overall (18.9 %). ENSO and PDO show the most significant correlations over northern South America, the central and western USA, the Middle East, eastern Russia, and eastern Australia. On the other hand, the AMO shows significant associations over Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Our analysis brings new insights on hydrological multi-hazards that are of relevance to governments and organizations with globally distributed interests. Specifically, the multi-hazard maps may be used to evaluate worst-case disaster scenarios considering the potential co-occurrence of wet and dry hydrological extremes.


2020 ◽  
Vol 16 (2) ◽  
pp. 783-798
Author(s):  
Sarir Ahmad ◽  
Liangjun Zhu ◽  
Sumaira Yasmeen ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
...  

Abstract. The rate of global warming has led to persistent drought. It is considered to be the preliminary factor affecting socioeconomic development under the background of the dynamic forecasting of the water supply and forest ecosystems in West Asia. However, long-term climate records in the semiarid Hindu Kush range are seriously lacking. Therefore, we developed a new tree-ring width chronology of Cedrus deodara spanning the period of 1537–2017. We reconstructed the March–August Palmer Drought Severity Index (PDSI) for the past 424 years, going back to 1593 CE. Our reconstruction featured nine dry periods (1593–1598, 1602–1608, 1631–1645, 1647–1660, 1756–1765, 1785–1800, 1870–1878, 1917–1923, and 1981–1995) and eight wet periods (1663–1675, 1687–1708, 1771–1773, 1806–1814, 1844–1852, 1932–1935, 1965–1969, and 1990–1999). This reconstruction is consistent with other dendroclimatic reconstructions in West Asia, thereby confirming its reliability. The multi-taper method and wavelet analysis revealed drought variability at periodicities of 2.1–2.4, 3.3, 6.0, 16.8, and 34.0–38.0 years. The drought patterns could be linked to the large-scale atmospheric–oceanic variability, such as the El Niño–Southern Oscillation, Atlantic Multidecadal Oscillation, and solar activity. In terms of current climate conditions, our findings have important implications for developing drought-resistant policies in communities on the fringes of the Hindu Kush mountain range in northern Pakistan.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 839
Author(s):  
Liang Shi ◽  
Guangxin Li ◽  
Hongyan Liu ◽  
Jeffery P. Dech ◽  
Mei Zhou ◽  
...  

Droughts are a recurrent phenomenon in the semiarid forest-steppe ecotone of Mongolia with negative consequences for tree growth and agricultural management. In order to better cope with the uncertainty of a changing climate, the study of historical drought and its effects on forests could provide useful insights into ecosystem responses to climate variability. Siberian larch (Larix sibirica) is a dominant tree species in Western Mongolia that provides a valuable source of proxy data in the form of annual rings. We used dendrochronological techniques to establish a standard master chronology and analyze the relationship between annual ring widths and climatic factors. Correlation analyses revealed that the strongest associations of tree-ring index (TRI) values for the master chronology to direct climate variables were June temperature (r = −0.36, p < 0.01) and precipitation (r = 0.39, p < 0.01). The master chronology was strongly correlated to Palmer Drought Severity Index (PDSI) for June (r = 0.606, p < 0.001), and this variable (PDSIJun) was chosen for reconstruction. A simple linear regression of PDSIJun based on TRI explained 35.4% of the total variance for the period 1965–2016 and based on this model the PDSIJun changes from 1731–2016 were reconstructed. Split–sample calibration–verification tests were conducted to evaluate the quality of the model used for climate reconstruction. In the past 286 years, the number of non-drought years (PDSI > 0) was low, with a frequency of only 14.1% of the total reconstruction years. Extreme drought (PDSIJun < −2.70) occurred frequently in the 19th and early and late 20th centuries. Multi-taper method (MTM) spectra and wavelet analysis showed that the reconstructed PDSI series had high and low frequency periods (2.4–3.3 and 85–92 years). Our findings provide an understanding of the drought history of the semiarid forest-steppe ecotone of western Mongolia.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 505 ◽  
Author(s):  
Feng Chen ◽  
Tongwen Zhang ◽  
Andrea Seim ◽  
Shulong Yu ◽  
Ruibo Zhang ◽  
...  

Coniferous forests cover the mountains in many parts of Central Asia and provide large potentials for dendroclimatic studies of past climate variability. However, to date, only a few tree-ring based climate reconstructions exist from this region. Here, we present a regional tree-ring chronology from the moisture-sensitive Zeravshan juniper (Juniperus seravschanica Kom.) from the Kuramin Range (Tajikistan) in western Central Asia, which is used to reveal past summer drought variability from 1650 to 2015 Common Era (CE). The chronology accounts for 40.5% of the variance of the June–July self-calibrating Palmer Drought Severity Index (scPDSI) during the instrumental period (1901 to 2012). Seven dry periods, including 1659–1696, 1705–1722, 1731–1741, 1758–1790, 1800–1842, 1860–1875, and 1931–1987, and five wet periods, including 1742–1752, 1843–1859, 1876–1913, 1921–1930, and 1988–2015, were identified. Good agreements between drought records from western and eastern Central Asia suggest that the PDSI records retain common drought signals and capture the regional dry/wet periods of Central Asia. Moreover, the spectral analysis indicates the existence of centennial (128 years), decadal (24.3 and 11.4 years), and interannual (8.0, 3.6, 2.9, and 2.0 years) cycles, which may be linked with climate forces, such as solar activity and El Niño-Southern Oscillation (ENSO). The analysis between the scPDSI reconstruction and large-scale atmospheric circulations during the reconstructed extreme dry and wet years can provide information about the linkages of extremes in our scPDSI record with the large-scale ocean–atmosphere–land circulation systems.


1995 ◽  
Vol 69 (2) ◽  
pp. 264-279 ◽  
Author(s):  
Simon R. A. Kelly

Newly discovered trigonioid bivalves are systematically described from the Late Albian of the Fossil Bluff Group of Alexander Island, Antarctic Peninsula. The fauna includes Nototrigonia (Nototrigonia) ponticula Skwarko, N. (Callitrigonia) offsetensis n. sp., Eselaevitrigonia macdonaldi n. sp., Pterotrigonia (Pisotrigonia) capricornia (Skwarko), and Pacitrigonia praenuntians n. sp. It represents the first Albian trigonioid fauna described from the Antarctic. It is also the first published record of the Nototrigoniinae (excluding Pacitrigonia) outside Australasia. Paleoecologically, this fauna represents the shallowest and highest energy molluscan assemblage from the Fossil Bluff Group and occurs near the base of a significant transgressive unit, the Mars Glacier Member of the Neptune Glacier Formation. The paleogeography of Austral Cretaceous trigonioids is reviewed. Endemic centers are identified in India–east Africa, southern South America, and Australasia. Only one trigonioid genus, Pacitrigonia, had its origin in the Antarctic. During the earliest Cretaceous, cosmopolitan trigonioid genera occurred in Antarctica. In the mid-Cretaceous faunal similarity of Antarctica with Australasia was strong, and in the latest Cretaceous affinity with southern South America increased.


2021 ◽  
Vol 17 (2) ◽  
pp. 111-124
Author(s):  
Safrudin Nor Aripbilah ◽  
Heri Suprapto

El Nino and La Nina in Indonesia are one of the reasons that caused climate changes, which has possibility of drought and flood disasters. Sragen Regency wherethe dry season occurs, drought happened meanwhile other areas experience floods and landslides. A study on drought needs to be carried out so as to reduce the risk of losses due to the drought hazard. This study is to determine the drought index in Sragen Regency based on several methods and the correlation of each methods and its suitability to the Southern Oscillation Index (SOI) and rainfall. Drought was analyzed using several methods such as Palmer Drought Severity Index (PDSI), Thornthwaite-Matter, and Standardized Precipitation Index (SPI) then correlated with SOI to determine the most suitable method for SOI. The variables are applied in this method are rainfall, temperature, and evapotranspiration. The results showed that the drought potential of the Palmer method is only in Near Normal conditions, which is 1%, Severe drought conditions are 29% for the Thornthwaite-Matter method, and Extreme Dry conditions only reach 1,11% for the SPI method. The PDSI and SPI methods are inversely proportional to the Thornthwaite-Matter method and the most suitable method for SOI values or rainfall is the SPI method. These three methods can be identified the potential for drought with only a few variables so that they could be applied if they only have those data.Keywords: Drought, PDSI, Thornthwaite-Matter, SPI, SOI


2005 ◽  
Vol 18 (5) ◽  
pp. 702-718 ◽  
Author(s):  
Leila M. V. Carvalho ◽  
Charles Jones ◽  
Tércio Ambrizzi

Abstract The Antarctic Oscillation (AAO) has been observed as a deep oscillation in the mid- and high southern latitudes. In the present study, the AAO pattern is defined as the leading mode of the empirical orthogonal function (EOF-1) obtained from daily 700-hPa geopotential height anomalies from 1979 to 2000. Here the objective is to identify daily positive and negative AAO phases and relationships with intraseasonal activity in the Tropics and phases of the El Niño–Southern Oscillation (ENSO) during the austral summer [December–January–February (DJF)]. Positive and negative AAO phases are defined when the daily EOF-1 time coefficient is above (or below) one standard deviation of the DJF mean. Composites of low-frequency sea surface temperature variation, 200-hPa zonal wind, and outgoing longwave radiation (OLR) indicate that negative (positive) phases of the AAO are dominant when patterns of SST, convection, and circulation anomalies resemble El Niño (La Niña) phases of ENSO. Enhanced intraseasonal activity from the Tropics to the extratropics of the Southern (Northern) Hemisphere is associated with negative (positive) phases of the AAO. In addition, there is indication that the onset of negative phases of the AAO is related to the propagation of the Madden–Julian oscillation (MJO). Suppression of intraseasonal convective activity over Indonesia is observed in positive AAO phases. It is hypothesized that deep convection in the central tropical Pacific, which is related to either El Niño or eastward-propagating MJO, or a combination of both phenomena, modulates the Southern Hemisphere circulation and favors negative AAO phases during DJF. The alternation of AAO phases seems to be linked to the latitudinal migration of the subtropical upper-level jet and variations in the intensity of the polar jet. This, in turn, affects extratropical cyclone properties, such as origin, minimum/maximum central pressure, and their equatorward propagation.


Sign in / Sign up

Export Citation Format

Share Document