scholarly journals Variability of summer precipitation over eastern China during the last millennium

2008 ◽  
Vol 4 (3) ◽  
pp. 611-643 ◽  
Author(s):  
C. Shen ◽  
W.-C. Wang ◽  
Y. Peng ◽  
Y. Xu ◽  
J. Zheng

Abstract. We use measurements of recent decades, 1500-yr proxy data, and millennium model simulations with a variety of climate facings to study the temporal and spatial variability of summer precipitation over eastern China. Spectral analysis of the proxy data using multi-taper method reveals three statistically significant bidecadal (15–35-yr), pendadecadal (40–60-yr), and centennial (65–170-yr) oscillation bands. The results of wavelet filtering show that the amplitudes of these bands vary substantially through time depending on the temperature regimes. Weak centennial oscillation and strong pentadecadal oscillation occur in warm conditions, whereas the oscillations are both strong in cold conditions. A model/data intercomparison suggests that the centennial oscillation might be linked to the fluctuation of solar forcing (Gleissberg cycle), and the pentadecadal and bidecadal oscillations could be associated with internal variability of the climate system. It is also found that the increased frequency of drought-in-north/flood-in-south spatial pattern over eastern China during the last two decades is unusual in the past five centuries.

2009 ◽  
Vol 5 (2) ◽  
pp. 129-141 ◽  
Author(s):  
C. Shen ◽  
W.-C. Wang ◽  
Y. Peng ◽  
Y. Xu ◽  
J. Zheng

Abstract. We use measurements of recent decades, 1500-yr proxy data, and millennium model simulations with a variety of climate facings to study the temporal and spatial variability of summer precipitation over eastern China. Spectral analysis of the proxy data using multi-taper method reveals three statistically significant bidecadal (15–35-yr), pendadecadal (40–60-yr), and centennial (65–170-yr) oscillation bands. The results of wavelet filtering show that the amplitudes of these bands vary substantially through time depending on the temperature regimes. Weak centennial oscillation and strong pentadecadal oscillation occur in warm conditions, whereas both the centennial and pentadecadal oscillations are strong in cold conditions. A model/data intercomparison suggests that pentadecadal and bidecadal oscillations could be associated with internal variability of the climate system. It is also found that the increased frequency of drought-in-north/flood-in-south spatial pattern over eastern China during the last two decades is unusual in the past five centuries.


2015 ◽  
Vol 11 (5) ◽  
pp. 4159-4204 ◽  
Author(s):  
S. A. Browning ◽  
I. D. Goodwin

Abstract. Recent advances in proxy-model data assimilation have made feasible the development of proxy-based reanalyses. Proxy-based reanalyses aim to make optimum use of both proxy and model data while presenting paleoclimate information in an accessible format – they will undoubtedly play a pivotal role in the future of paleoclimate research. In the Paleoclimate Reanalysis Project (PaleoR) we use "off-line" data assimilation to constrain the CESM1 (CAM5) Last Millennial Ensemble (LME) simulation with a globally distributed multivariate proxy dataset, producing a decadal resolution reanalysis of the past millennium. Discrete time periods are "reconstructed" by using anomalous (±0.5σ) proxy climate signals to select an ensemble of climate state analogues from the LME. Prior to assimilation the LME simulates internal variability that is temporally inconsistent with information from the proxy archive. After assimilation the LME is highly correlated to almost all included proxy data, and dynamical relationships between modelled variables are preserved; thus providing a "real-world" view of climate system evolution during the past millennium. Unlike traditional regression based approaches to paleoclimatology, PaleoR is unaffected by temporal variations in teleconnection patterns. Indices representing major modes of global ocean–atmosphere climate variability can be calculated directly from PaleoR spatial fields. PaleoR derived ENSO, SAM, and NAO indices are consistent with observations and published multiproxy reconstructions. The computational efficiency of "off-line" data assimilation allows easy incorporation and evaluation of new proxy data, and experimentation with different setups and model simulations. PaleoR spatial fields can be viewed online at http://climatefutures.mq.edu.au/research/themes/marine/paleor/.


2012 ◽  
Vol 599 ◽  
pp. 690-696
Author(s):  
Fan Hua Min ◽  
Bai Cheng Xia ◽  
De Liu ◽  
Yu Han

Using 1966~2010 year Jun.~Aug. precipitation data over 34 stations of Chongqing region, the temporal and spatial variability features were studied by applying the methods of EOF, REOF, Morlet wavelet analysis. The results indicate that the summer precipitation spatial differences are great. The summer precipitation distribution exhibits the common features as well as the spatial differences, which can be classified into four types as Northeast, Northwest, Southeast and Southwest Chongqing. The inter-annual variation characteristic in the four types is not correspondent. Northeast and Southwest ones are like a parabolic curve which have a maximum value and Southwest and Northwest ones exist upward tendency. The periods of the four types are not unanimous.


2014 ◽  
Vol 10 (3) ◽  
pp. 1079-1091 ◽  
Author(s):  
Y. Peng ◽  
C. Shen ◽  
H. Cheng ◽  
Y. Xu

Abstract. We use proxy data and modeled data from 1000 year model simulations with a variety of climate forcings to examine the occurrence of severe event of persistent drought over eastern China during the last millennium and diagnose the mechanisms. Results show that the model was able to roughly simulate most of these droughts over the study area during the last millennium such as those that occurred during the periods of 1123–1152, 1197–1223, 1353–1363, 1428–1449, 1479–1513, and 1632–1645. Our analyses suggest that these six well-captured droughts may caused by the East Asian summer monsoon (EASM) weakening. Study on the wavelet transform and spectral analysis reveals these events occurred all at the statistically significant 15–35-year timescale. A modeled data intercomparison suggests the possibility that solar activity may be the primary driver in the occurrence of the 1129–1144, 1354–1365, 1466–1491 and 1631–1648 droughts as identified by the model. However another possibility that these events may be related to internal variability cannot be excluded. Although the El Niño–Southern Oscillation (ENSO) plays an important role in monsoon variability, a temporally consistent relationship between the droughts and SST pattern in the Pacific Ocean could not be found either in the modeled or proxy data. Our analyses also indicate that large volcanic eruptions play a role as an amplifier in the drought of 1631–1648 and caused the droughts of 1830–1853 and 1958–1976, which was identified by the model.


2020 ◽  
Vol 33 (21) ◽  
pp. 9391-9407
Author(s):  
Sonika Shahi ◽  
Jakob Abermann ◽  
Georg Heinrich ◽  
Rainer Prinz ◽  
Wolfgang Schöner

AbstractStrong and thick temperature inversions are key components of the Arctic climate system and it is important to study and better understand them. The present study quantifies the temporal and spatial variability of surface-based inversions (SBIs) and elevated inversions (EIs) over Greenland, as derived from the ERA-Interim (ERA-I) dataset for the period 1979–2017. The seasonal and multiannual variability of inversion strength, thickness, and frequency are examined. Our results clearly show regional as well as seasonal patterns of both SBIs and EIs. SBIs are more frequent and stronger than EIs, and the spatial variability of inversions is larger during winter and smaller during summer. Furthermore, during summer, there has been a trend toward stronger (0.3 K decade−1), thicker (12 m decade−1), and more frequent (3% decade−1) SBIs in the southern part of Greenland, especially in the past two decades. Evidently, the strengthening of the anticyclone over Greenland causes a reduction of cloud cover, which manifests in an increase in SBI strength and thickness, particularly in the southern part of Greenland.


2013 ◽  
Vol 9 (6) ◽  
pp. 6345-6373 ◽  
Author(s):  
Y. Peng ◽  
C. Shen ◽  
H. Cheng ◽  
Y. Xu

Abstract. We use proxy data and modeled data from 1000 yr model simulations with a variety of climate forcings to examine the occurrence of severe events of persistent drought over eastern China during the last millennium and to diagnose the mechanisms. Results show that the model was able to simulate many aspects of the low-frequency (periods greater than 10 yr) variations of precipitation over eastern China during the last millennium, including most of the severe persistent droughts such as those in the 1130s, 1200s, 1350s, 1430s, 1480s, and the late 1630s–mid-1640s. These six droughts are identified both in the proxy data and in the modeled data and are consistent with each other in terms of drought intensity, duration, and spatial coverage. Our analyses suggest that monsoon circulation can lock into a drought-prone mode that may last for years to decades and supports the suggestion that generally reduced monsoon in eastern Asia were associated with the land–sea thermal contrast. Study on the wavelet transform and spectral analysis reveals six well-captured events occurred all at the drought stages of statistically significant 15–35 yr timescale. A modeled data intercomparison suggests that solar activity is the primary driver in the occurrence of the 1130s, 1350s, 1480s, and late 1630s–mid-1640s droughts. Although the El-Niño–Southern Oscillation (ENSO) plays an important role in monsoon variability, a temporally consistent relationship between the droughts and SST pattern in the Pacific Ocean could not be found in the model. Our analyses also indicate that large volcanic eruptions play a role as an amplifier in the drought of 1635–1645 and caused the model to overestimate the decreasing trends in summer precipitation over eastern China during the mid-1830s and the mid-1960s.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongdong Wang ◽  
Bin Zhu ◽  
Hongbo Wang ◽  
Li Sun

AbstractIn this study, we designed a sensitivity test using the half number concentration of sulfate in the nucleation calculation process to study the aerosol-cloud interaction (ACI) of sulfate on clouds, precipitation, and monsoon intensity in the summer over the eastern China monsoon region (ECMR) with the National Center for Atmospheric Research Community Atmosphere Model version 5. Numerical experiments show that the ACI of sulfate led to an approximately 30% and 34% increase in the cloud condensation nuclei and cloud droplet number concentrations, respectively. Cloud droplet effective radius below 850 hPa decreased by approximately 4% in the southern ECMR, while the total liquid water path increased by 11%. The change in the indirect radiative forcing due to sulfate at the top of the atmosphere in the ECMR during summer was − 3.74 W·m−2. The decreased radiative forcing caused a surface cooling of 0.32 K and atmospheric cooling of approximately 0.3 K, as well as a 0.17 hPa increase in sea level pressure. These changes decreased the thermal difference between the land and sea and the gradient of the sea-land pressure, leading to a weakening in the East Asian summer monsoon (EASM) and a decrease in the total precipitation rate in the southern ECMR. The cloud lifetime effect has a relatively weaker contribution to summer precipitation, which is dominated by convection. The results show that the ACI of sulfate was one possible reason for the weakening of the EASM in the late 1970s.


2021 ◽  
Vol 13 (13) ◽  
pp. 2570
Author(s):  
Teng Li ◽  
Bozhong Zhu ◽  
Fei Cao ◽  
Hao Sun ◽  
Xianqiang He ◽  
...  

Based on characteristics analysis about remote sensing reflectance, the Secchi Disk Depth (SDD) in the Qiandao Lake was predicted from the Landsat8/OLI data, and its changing rates on a pixel-by-pixel scale were obtained from satellite remote sensing for the first time. Using 114 matchups data pairs during 2013–2019, the SDD satellite algorithms suitable for the Qiandao Lake were obtained through both the linear regression and machine learning (Support Vector Machine) methods, with remote sensing reflectance (Rrs) at different OLI bands and the ratio of Rrs (Band3) to Rrs (Band2) as model input parameters. Compared with field observations, the mean absolute relative difference and root mean squared error of satellite-derived SDD were within 20% and 1.3 m, respectively. Satellite-derived results revealed that SDD in the Qiandao Lake was high in boreal spring and winter, and reached the lowest in boreal summer, with the annual mean value of about 5 m. Spatially, high SDD was mainly concentrated in the southeast lake area (up to 13 m) close to the dam. The edge and runoff area of the lake were less transparent, with an SDD of less than 4 m. In the past decade (2013–2020), 5.32% of Qiandao Lake witnessed significant (p < 0.05) transparency change: 4.42% raised with a rate of about 0.11 m/year and 0.9% varied with a rate of about −0.09 m/year. Besides, the findings presented here suggested that heavy rainfall would have a continuous impact on the Qiandao Lake SDD. Our research could promote the applications of land observation satellites (such as the Landsat series) in water environment monitoring in inland reservoirs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Zhao ◽  
Wen Chen ◽  
Shangfeng Chen ◽  
Hainan Gong ◽  
Tianjiao Ma

AbstractObservations indicate that late-summer precipitation over the East Asian transitional climate zone (TCZ) showed a pronounced decreasing trend during 1951–2005. This study examines the relative contributions of anthropogenic [including anthropogenic aerosol (AA) and greenhouse gas (GHG)] and natural forcings to the drying trend of the East Asian TCZ based on simulations from CMIP5. The results indicate that AA forcing plays a dominant role in contributing to the drying trend of the TCZ. AA forcing weakens the East Asian summer monsoon via reducing the land-sea thermal contrast, which induces strong low-level northerly anomalies over eastern China, suppresses water vapor transport from southern oceans and results in drier conditions over the TCZ. In contrast, GHG forcing leads to a wetting trend in the TCZ by inducing southerly wind anomalies, thereby offsetting the effect of the AA forcing. Natural forcing has a weak impact on the drying trend of the TCZ due to the weak response of atmospheric anomalies.


Sign in / Sign up

Export Citation Format

Share Document