Reducing transport errors in WRF modeling of greenhouse gas distributions through a combination of grid-nudging and regular restarts

2021 ◽  
Author(s):  
Tzu-Hsin Ho ◽  
Michał Gałkowski ◽  
Julia Marshall ◽  
Kai Uwe Totsche ◽  
Christoph Gerbig

<p>Atmospheric transport models are often used to simulate the distribution of Greenhouse Gases (GHGs) for atmospheric inverse modeling. However, errors in simulated transport are often neglected in the context of inverse flux estimation. We coupled the commonly used Weather Research and Forecasting (WRF) model with the greenhouse gas module (WRF-GHG), to enable passive tracer transport simulation of CO<sub>2</sub> and CH<sub>4</sub>. As a mesoscale numerical weather prediction model, WRF’s transport is only constrained by global meteorological fields via initialization and at the lateral boundaries; over time the winds in the center of the domain can deviate considerably from these (re-)analysis fields that are constrained by observations. The aim of this study is to have the WRF-simulated transport represent reality as closely as possible, which in this case means staying consistent with the (ERA5) reanalysis fields used as boundary conditions.</p> <p>Therefore, two ways of blending ERA5 with WRF-GHG were tested: (a) regularly restarting the model with fresh initial conditions from ERA5, and (b) nudging the atmospheric winds, temperatures, and moisture to those from ERA5 continuously, using the built-in FDDA option (four-dimensional data assimilation). FDDA constantly forces the model towards the physical reference state (ERA5) by adding an additional tendency term at each grid point and time step.</p> <p>Meteorological variables, as well as the concentrations of CO<sub>2</sub> and CH<sub>4</sub>, were analyzed by comparing with observations. We also compared mixed layer heights (PBLH) with radiosonde-derived observation. We found that performance in horizontal winds and PBLH are slightly better in the nudged simulation (NS) compared to the simulation incorporating frequent restarts (RS). The advantage of grid-nudging is notable when comparing CH<sub>4</sub> with aircraft measurements from the CoMet campaign. However, differences in soil moisture increase over time, as soil moisture is not used for nudging. The consequence is a change in the Bowen ratio and thus in vertical mixing, impacting the distribution of GHG tracers in general.</p> <p>To preserve the benefits of nudging and avoid the divergence of soil moisture, we recommend a hybrid approach, combining nudging with daily re-initializations. This technique will be used in an ensemble-based regional inversion system currently under development to make use of satellite-based measurements of GHGs.</p>

2016 ◽  
Vol 17 (2) ◽  
pp. 517-540 ◽  
Author(s):  
Joseph A. Santanello ◽  
Sujay V. Kumar ◽  
Christa D. Peters-Lidard ◽  
Patricia M. Lawston

Abstract Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASA’s Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land–atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS–WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spinup can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux–PBL–ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.


2019 ◽  
Vol 147 (9) ◽  
pp. 3445-3466 ◽  
Author(s):  
Andrés A. Pérez Hortal ◽  
Isztar Zawadzki ◽  
M. K. Yau

Abstract We introduce a new technique for the assimilation of precipitation observations, the localized ensemble mosaic assimilation (LEMA). The method constructs an analysis by selecting, for each vertical column in the model, the ensemble member with precipitation at the ground that is locally closest to the observed values. The proximity between the modeled and observed precipitation is determined by the mean absolute difference of precipitation intensity, converted to reflectivity and measured over a spatiotemporal window centered at each grid point of the model. The underlying hypothesis of the approach is that the ensemble members that are locally closer to the observed precipitation are more probable to be closer to the “truth” in the state variables than the other members. The initial conditions for the new forecast are obtained by nudging the background states toward the mosaic of the closest ensemble members (analysis) over a 30 min time interval, reducing the impacts of the imbalances at the boundaries between the different selected members. The potential of the method is studied using observing system simulation experiments (OSSEs) employing a small ensemble of 20 members. The ensemble is produced by the WRF Model, run at a horizontal grid spacing of 20 km. The experiments lend support to the validity of the hypothesis and allow the determination of the optimal parameters for the approach. In the context of OSSE, this new data assimilation technique is able to produce forecasts with considerable and long-lived error reductions in the fields of precipitation, temperature, humidity, and wind.


Author(s):  
Lawrence Welch ◽  
Stephen Ekwaro-Osire

An agent based simulation engine should provide a fair playing field for all of its agents. A fundamental design axiom of agent based simulation frameworks is that the simulation engine should not arbitrarily bias its execution towards one agent or another. This fairness is basic to giving the agent modeler confidence that differences in behavior and performance between agents derive legitimately from the simulation modeling, initial conditions or specific agent characteristics, rather than the capriciousness of the underlying framework. One aspect of fairness in a simulation is the relative order of execution of agents over time. This order of execution is affected by techniques employed by frameworks to simulate the concurrent activities of multiple agents. One such technique is multi-threading. Multi-threaded operating systems, or programming languages and environments, such as Java, allow multiple agents, represented by software threads, to share the computer’s execution time by taking turns, thus appearing to act simultaneously. The precise order of execution of peer threads in multi-threaded applications is often out of the hands of the programmer, and may be determined exclusively by the operating system or program execution environment. However, if overlooked by the framework developer, the idiosyncrasies of a particular thread ordering mechanism can pass on to the modeler inherent random behavior that is neither intuitive, nor in line with the modeler’s expectations. To be considered fair, the engine should aim to provide all agents with equal probability of executing first within a time step, or last, or in any position in between. This paper analyzes the sequencing of agent thread execution within a Java framework that implements a multi-threaded, time-stepping, agent based simulation engine. The natural ordering of Java thread execution is demonstrated to be unfair (that is, not uniform) in its treatment of agents. This research shows that the standard mechanism of Java thread scheduling, while appropriate for most applications, is inappropriate on its own for the agent based framework. It is demonstrated that with Java’s standard thread scheduling algorithm, over time certain agents tend to execute ahead of others within each time step, while others tend to execute in the middle or at the back of the pack. This paper then introduces and demonstrates the “Uniform Specific Notification” pattern, a technique that produces a fairer, uniformly distributed random order for the initial execution of Java agent threads at each simulation time step.


2020 ◽  
Author(s):  
Matilde García-Valdecasas Ojeda ◽  
Juan José Rosa-Cánovas ◽  
Emilio Romero-Jiménez ◽  
Patricio Yeste ◽  
Sonia R. Gámiz-Fortis ◽  
...  

<p>Land surface-related processes play an essential role in the climate conditions at a regional scale. In this study, the impact of soil moisture (SM) initialization on regional climate modeling has been explored by using a dynamical downscaling experiment. To this end, the Weather Research and Forecasting (WRF) model was used to generate a set of high-resolution climate simulations driven by the ERA-Interim reanalysis for a period from 1989 to 2009. As the spatial configuration, two one-way nested domains were used, with the finer domain being centered over the Iberian Peninsula (IP) at a spatial resolution of about 10 km, and nested over a coarser domain that covers the Euro-CORDEX region at 50 km of spatial resolution.</p><p>The sensitivity experiment consisted of two control runs (CTRL) performed using as SM initial conditions those provided by ERA-Interim, and initialized for two different dates times (January and June). Additionally, another set of runs was completed driven by the same climate data but using as initial conditions prescribed SM under wet and dry scenarios.</p><p>The study is based on assessing the WRF performance by comparing the CTRL simulations with those performed with the different prescribed SM, and also, comparing them with the observations from the Spanish Temperature At Daily scale (STEAD) dataset. In this sense, we used two temperature extreme indices within the framework of decadal predictions: the warm spell index (WSDI) and the daily temperature range (DTR).</p><p>These results provide valuable information about the impact of the SM initial conditions on the ability of the WRF model to detect temperature extremes, and how long these affect the regional climate in this region. Additionally, these results may provide a source of knowledge about the mechanisms involved in the occurrence of extreme events such as heatwaves, which are expected to increase in frequency, duration, and magnitude under the context of climate change.</p><p><strong>Keywords</strong>: soil moisture initial conditions, temperature extremes, regional climate, Weather Research and Forecasting model</p><p>Acknowledgments: This work has been financed by the project CGL2017-89836-R (MINECO-Spain, FEDER). The WRF simulations were performed in the Picasso Supercomputer at the University of Málaga, a member of the Spanish Supercomputing Network.</p>


2015 ◽  
Vol 143 (10) ◽  
pp. 4012-4037 ◽  
Author(s):  
Colin M. Zarzycki ◽  
Christiane Jablonowski

Abstract Tropical cyclone (TC) forecasts at 14-km horizontal resolution (0.125°) are completed using variable-resolution (V-R) grids within the Community Atmosphere Model (CAM). Forecasts are integrated twice daily from 1 August to 31 October for both 2012 and 2013, with a high-resolution nest centered over the North Atlantic and eastern Pacific Ocean basins. Using the CAM version 5 (CAM5) physical parameterization package, regional refinement is shown to significantly increase TC track forecast skill relative to unrefined grids (55 km, 0.5°). For typical TC forecast integration periods (approximately 1 week), V-R forecasts are able to nearly identically reproduce the flow field of a globally uniform high-resolution forecast. Simulated intensity is generally too strong for forecasts beyond 72 h. This intensity bias is robust regardless of whether the forecast is forced with observed or climatological sea surface temperatures and is not significantly mitigated in a suite of sensitivity simulations aimed at investigating the impact of model time step and CAM’s deep convection parameterization. Replacing components of the default physics with Cloud Layers Unified by Binormals (CLUBB) produces a statistically significant improvement in forecast intensity at longer lead times, although significant structural differences in forecasted TCs exist. CAM forecasts the recurvature of Hurricane Sandy into the northeastern United States 60 h earlier than the Global Forecast System (GFS) model using identical initial conditions, demonstrating the sensitivity of TC forecasts to model configuration. Computational costs associated with V-R simulations are dramatically decreased relative to globally uniform high-resolution simulations, demonstrating that variable-resolution techniques are a promising tool for future numerical weather prediction applications.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wonheung Kim ◽  
Seong Soo Yum ◽  
Jinkyu Hong ◽  
Jae In Song

Improvement of fog simulation accuracy was investigated for the fogs that occurred on the south coast of the Korean Peninsula using the WRF (3D) and PAFOG (1D) coupled model. In total, 22 fog cases were simulated and accuracy of the fog simulation was examined based on Critical Success Index, Hit Rate and False Alarm Rate. The performance of the coupled WRF-PAFOG model was better than that of the single WRF model as expected. However, much more significant improvement appeared only when the data from a 300 m meteorological tower was not only used for the initial conditions but also nudged during the simulation. Moreover, a proper prescription of soil moisture was found to be important for accurate fog simulation especially for the fog cases with prior precipitation since efficient moisture supply from the precipitation-soaked soil might have been critical for fog formation. It was also demonstrated that with such optimal coupled model setting, a coastal radiation fog event with prior precipitation could be very realistically simulated: the fog onset and dissipation times matched so well with observation. In detail, radiative cooling at the surface was critical to form a surface inversion layer as the night fell. Then the vapor flux from the precipitation-soaked surface was confined within the inversion layer to form fog. It is suggested that a proper prescription of soil moisture in the model based on observations, if readily available, could be a cost-effective method for improving operational fog forecasting, considering the fact that tall meteorological towers are a rarity in the world.


2021 ◽  
Author(s):  
Ajay Bankar ◽  
Rakesh Vasudevan

<p><span>Extreme Rainfall Events (EREs) in India has increased many folds in recent decades. These severe weather events are generally destructive in nature causing flash floods, catastrophic loss of life and property over densely populated urban cities. Various cities in Karnataka, a southern state in India, witnessed many EREs recently. Appropriate advanced warning systems to predict these events are crucial for preparedness of mitigation strategy to reduce human casualty and socio economic loss. Mesoscale models are essential tools for developing an integrated platform for disaster warning and management. From a stakeholder/user pint of view, primary requirement to tackle ERE related damages is accurate prediction of the observed rainfall location, coverage and intensity in advance. Weather prediction models have inherent limitations imposed primarily by approximations in the model and inadequacies in data. Hence, it is important to evaluate the skill of these models for many cases under different synoptic conditions to quantify model skill before using them for operational applications. The objective of the study is to evaluate performance of the Weather Research and Forecasting (WRF) model for several ERE cases in Karnataka at different model initial conditions. The EREs were identified from the distribution of rainfall events over different regions in Karnataka and those events comes under 1% probability were considered. We examined 38 ERE’s distributed over Karnataka for the period June to November for the years 2015-2019. WRF model is configured with 3 nested domains with outer, inner and innermost domains having resolution of 12 km, 9 km and 3 km respectively. Two sets of simulations are conducted in this study, i) staring at 12 hours prior to the ERE day (i.e. -1200 UTC) & ii) starting at 0000 UTC of the ERE day. Performance of the WRF model forecast is validated against 15 minutes rainfall observations from ~6000 rain gauge stations over Karnataka. During initial hours forecasts initiated at 1200 UTC has distinct advantage in terms of accuracy compared to those initiated at 0000 UTC for most of the cases. In general, model underpredict EREs and underprediction is relatively low for forecasts initiated at 12 00 UTC.</span></p>


2016 ◽  
Vol 31 (1) ◽  
pp. 217-236 ◽  
Author(s):  
María E. Dillon ◽  
Yanina García Skabar ◽  
Juan Ruiz ◽  
Eugenia Kalnay ◽  
Estela A. Collini ◽  
...  

Abstract Improving the initial conditions of short-range numerical weather prediction (NWP) models is one of the main goals of the meteorological community. Development of data assimilation and ensemble forecast systems is essential in any national weather service (NWS). In this sense, the local ensemble transform Kalman filter (LETKF) is a methodology that can satisfy both requirements in an efficient manner. The Weather Research and Forecasting (WRF) Model coupled with the LETKF, developed at the University of Maryland, College Park, have been implemented experimentally at the NWS of Argentina [Servicio Meteorológico Nacional (SMN)], but at a somewhat lower resolution (40 km) than the operational Global Forecast System (GFS) at that time (27 km). The purpose of this work is not to show that the system presented herein is better than the higher-resolution GFS, but that its performance is reasonably comparable, and to provide the basis for a continued improved development of an independent regional data assimilation and forecasting system. The WRF-LETKF system is tested during the spring of 2012, using the prepared or quality controlled data in Binary Universal Form for Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) and lateral boundary conditions from the GFS. To assess the effect of model error, a single-model LETKF system (LETKF-single) is compared with a multischeme implementation (LETKF-multi), which uses different boundary layer and cumulus convection schemes for the generation of the ensemble of forecasts. The performance of both experiments during the test period shows that the LETKF-multi usually outperforms the LETKF-single, evidencing the advantages of the use of the multischeme approach. Both data assimilation systems are slightly worse than the GFS in terms of the synoptic environment representation, as could be expected given their lower resolution. Results from a case study of a strong convective system suggest that the LETKF-multi improves the location of the most intense area of precipitation with respect to the LETKF-single, although both systems show an underestimation of the total accumulated precipitation. These preliminary results encourage continuing the development of an operational data assimilation system based on WRF-LETKF at the SMN.


Author(s):  
Patrick J. Mathiesen ◽  
Craig Collier ◽  
Jan P. Kleissl

For solar irradiance forecasting, the operational numerical weather prediction (NWP) models (e.g. the North American Model (NAM)) have excellent coverage and are easily accessible. However, their accuracy in predicting cloud cover and irradiance is largely limited by coarse resolutions (> 10 km) and generalized cloud-physics parameterizations. Furthermore, with hourly or longer temporal output, the operational NWP models are incapable of forecasting intra-hour irradiance variability. As irradiance ramp rates often exceed 80% of clear sky irradiance in just a few minutes, this deficiency greatly limits the applicability of the operational NWP models for solar forecasting. To address these shortcomings, a high-resolution, cloud-assimilating model was developed at the University of California, San Diego (UCSD) and Garrad-Hassan, America, Inc (GLGH). Based off of the Weather and Research Forecasting (WRF) model, an operational 1.3 km-gridded solar forecast is implemented for San Diego, CA that is optimized to simulate local meteorology (specifically, summertime marine layer fog and stratus conditions) and sufficiently resolved to predict intra-hour variability. To produce accurate cloud-field initializations, a direct cloud assimilation system (WRF-CLDDA) was also developed. Using satellite imagery and ground weather station reports, WRF-CLDDA statistically populates the initial conditions by directly modifying cloud hydrometeors (cloud water and water vapor content). When validated against the dense UCSD pyranometer network, WRF-CLDDA produced more accurate irradiance forecasts than the NAM and more frequently predicted marine layer fog and stratus cloud conditions.


2015 ◽  
Vol 143 (12) ◽  
pp. 5115-5133 ◽  
Author(s):  
Michael A. Hollan ◽  
Brian C. Ancell

Abstract The use of ensembles in numerical weather prediction models is becoming an increasingly effective method of forecasting. Many studies have shown that using the mean of an ensemble as a deterministic solution produces the most accurate forecasts. However, the mean will eventually lose its usefulness as a deterministic forecast in the presence of nonlinearity. At synoptic scales, this appears to occur between 12- and 24-h forecast time, and on storm scales it may occur significantly faster due to stronger nonlinearity. When this does occur, the question then becomes the following: Should the mean still be adhered to, or would a different approach produce better results? This paper will investigate the usefulness of the mean within a WRF Model utilizing an ensemble Kalman filter for severe convective events. To determine when the mean becomes unrealistic, the divergence of the mean of the ensemble (“mean”) and a deterministic forecast initialized from a set of mean initial conditions (“control”) are examined. It is found that significant divergence between the mean and control emerges no later than 6 h into a convective event. The mean and control are each compared to observations, with the control being more accurate for nearly all forecasts studied. For the case where the mean provides a better forecast than the control, an approach is offered to identify the member or group of members that is closest to the mean. Such a forecast will contain similar forecast errors as the mean, but unlike the mean, will be on an actual forecast trajectory.


Sign in / Sign up

Export Citation Format

Share Document