Shifting eruption dynamics: Constraints from mineral chemistry and plagioclase-hosted melt inclusions at Santiaguito volcanic dome complex, Guatemala

Author(s):  
Eva Hartung ◽  
Paul A. Wallace ◽  
Felix W. Von Aulock ◽  
Adrian Hornby ◽  
Yan Lavallée

<p>Activity at Santiaguito volcanic dome complex started in 1922 with the continuous eruption of crystal-rich dacitic-andesitic lavas, which over the course of the last century, constructed a series of four domes and were host to frequent minor explosions. In 2016, a drastic shift in activity occurred with an 8-months period of heightened explosion intensity. We present records of textural and compositional variations in plagioclase, orthopyroxene and plagioclase-hosted melt inclusions of a series of ash and ballistic samples erupted and collected in-situ between 2015 and 2019 to reconstruct the magmatic processes associated with such shifts in activity.</p><p>Plagioclase phenocrysts show a wide range of compositions (An<sub>90-35</sub>) and can be grouped into three populations based on compositional and textural variations: crystals with resorbed albite-rich cores (An<sub>35–40</sub>), anorthite-rich cores (An<sub>85–90</sub>) and patchy zoned cores (An<sub>50–85</sub>). All plagioclase crystals contain homogenous rims of An<sub>50 </sub>that are marked by an increase in Fe content from about 3000 to 5000 ppm and a higher Mg content (of up to 300 ppm) towards the rim. Orthopyroxene phenocrysts show constant enstatite compositions from core to rim (En<sub>68-70</sub>). However, rims are relatively enriched and depleted in Ti and Mn contents respectively. Plagioclase-hosted melt inclusions are found in reversely zoned crystals, in crystal rims and between glomerocrysts. Irregularly shaped melt pockets are frequently observed in patchy zoned cores. Melt inclusions overall range in silica content from 71 to 78 SiO<sub>2 </sub>wt.% (anhydrous) and are marked by relatively high TiO<sub>2 </sub>and K<sub>2</sub>O contents.</p><p>Melt and mineral compositions and textures suggest that a shallow magma storage zone currently exists below Santiaguito volcanic dome complex. Pressure estimates of plagioclase-hosted melt inclusions yield an average of about 150 MPa (± 50 MPa) using rhyolite-MELTS indicating magma storage at depth of about 4 to 8 km. The observed increase in Fe, Mg and Ti contents in the rims of the plagioclase and orthopyroxene phenocrysts and microlite crystals are consistent with recharge of new magma into the upper crust, which was likely responsible for the drastic shift in eruption dynamics at Santiaguito volcanic dome complex in 2015-2016.</p>

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 102
Author(s):  
Silvio Mollo ◽  
Flavio Di Stefano ◽  
Francesca Forni

This Special Issue of Minerals collects seven different scientific contributions highlighting how magma chamber processes and eruption dynamics studied either in the laboratory or in nature may ultimately control the evolutionary histories and geochemical complexities of igneous rocks [...]


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 446
Author(s):  
Zhiming Xu ◽  
Chengquan Wu ◽  
Zhengwei Zhang ◽  
Jinhong Xu ◽  
Xiyao Li ◽  
...  

Manganese and Fe have similar geochemical properties in the supergene environment. Separation of Mn and Fe is an important process for the formation of high-grade sedimentary manganese deposits. Large-scale manganese carbonate deposits (total reserves of approximately 700 Mt) were formed during the interglacial of the Sturtian and Marinoan in South China. The orebodies are hosted in the black rock series at the basal Datangpo Formation of the Cryogenian period. The Fe contents in ores range from 1.15 to 7.18 wt.%, with an average of 2.80 wt.%, and the average Mn/Fe ratio is 8.9, indicating a complete separation of Mn and Fe during the formation of manganese ores. Here, we present element data of manganese carbonates and sulfur isotopes of pyrite from the Dawu deposit, Guizhou, China, aiming to investigate the separation mechanism of Mn and Fe and the ore genesis. The Fe in ores mainly occurs as carbonate (FeCO3) and pyrite (FeS2). The Mn, Ca, Mg and Fe exist in the form of isomorphic substitutions in manganese carbonate. The contents of FeCO3 in manganese carbonates are similar in different deposits, with averages of 2.6–2.8 wt.%. The whole-rock Fe and S contents have an obvious positive correlation (R = 0.69), indicating that the difference of whole-rock Fe content mainly comes from the pyrite content. The δ34SV-CDT of pyrite varies from 40.0 to 48.3‰, indicating that the pyrite formed in a restricted basin where sulfate supply was insufficient and the sulfate concentrations were extremely low. Additionally, the whole-rock Fe content is negatively correlated with the δ34S values of the whole-rock and pyrite, with correlation coefficients of −0.78 and −0.83, respectively. Two stages of separations of Mn and Fe might have occurred during the mineralization processes. The reduced seawater became oxidized gradually after the Sturtian glaciation, and Fe2+ was oxidized and precipitated before Mn2+, which resulted in the first-stage separation of Mn and Fe. The residual Mn-rich and Fe-poor seawater flowed into the restricted rift basin. Mn and Fe were then precipitated in sediments as oxyhydroxide as the seawater was oxidized. At the early stage of diagenesis, organic matter was oxidized, and manganese oxyhydroxide was reduced, forming the manganese carbonate. H2S was insufficient in the restricted basin due to the extremely low sulfate concentration. The Fe2+ was re-released due to the lack of H2S, resulting in the second-stage separation of Mn and Fe. Finally, the manganese carbonate deposit with low Fe and very high δ34S was formed in the restricted basin after the Sturtian glaciation.


2021 ◽  
Author(s):  
Corin Jorgenson ◽  
Luca Caricchi ◽  
Michael Stueckelberger ◽  
Giovanni Fevola ◽  
Gregor Weber

<p>Melt inclusions provide a window into the inner workings of magmatic systems. Both mineral chemistry and volatile distributions within melt inclusions can provide valuable information about the processes modulating magma ascent and preceding volcanic eruptions. Many melt inclusions host vapour bubbles which can be rich in CO<sub>2</sub> and H<sub>2</sub>O and must be taken into consideration when assessing the volatile budget of magmatic reservoirs. These vapour bubbles can be the product of differential volumetric contraction between the melt inclusion and host phase during an eruption or indicate an excess fluid phase in the magma reservoir. Thus, determining the distribution of volatiles between melt and vapour bubbles is integral to our fundamental understanding of melt inclusions, and by extension the evolution of volatiles within magmatic systems.</p><p>A large dataset of 79 high-resolution tomographic scans of clinopyroxene and leucite phenocrysts from the Colli Albani Caldera Complex (Italy) was recently acquired at the German Electron Synchrotron (DESY). These tomograms allow us to quantify the volume of melt inclusions and associated vapour bubble both glassy and microcrystalline melt inclusions. Notably, in the glassy melt inclusions the vapour bubbles exist either as a single large vapour bubble in the middle of the melt inclusion or as several smaller vapour bubbles distributed around the edge of the melt inclusion. These two types of melt inclusions can coexist within a single crystal. We suggest that the occurrence of these rim- bubbles is caused by one of two exsolution pathways, either pre-entrapment and bubble migration or post entrapment with preferential exsolution at the rims. By combining the analysis of hundreds of melt inclusions with the chemistry of the host phase we aim to unveil magma ascent rates and distribution of excess fluids within the magmatic system of Colli Albani, which produced several mafic-alkaline large volume ignimbrites.</p>


2021 ◽  
Author(s):  
Alp Ünal ◽  
Şafak Altunkaynak

<p>Balıkesir Volcanites (BV) are included into the Balıkesir Volcanic Province and contain various products of Oligo-Miocene volcanic activity in NW Anatolia. BV are formed from trachyandesite, andesite and dacite lavas with associated pyroclastic rocks. In this study, we report the petrographical investigations, mineral chemistry results and geothermobarometry calculations of the Balıkesir Volcanites in order to deduce the magma chamber processes and crystallization conditions. Andesites present a mineral composition of plagioclase (An35–50) + amphibole (edenitic hornblende) +biotite ± quartz and opaque minerals. The major phenocryst phases in dacite lavas are plagioclase (An39–53), quartz, amphibole (magnesio-hornblende), biotite, sanidine and opaque minerals. The mineral composition of the trachyandesites, on the other hand, is represented by plagioclase (An38–57) + amphibole (pargasitic hornblende) + biotite + clinopyroxene (endiopside- augite) ± sanidine ± quartz ± opaque minerals. Balıkesir Volcanites present distinct textural properties such as rounded plagioclase phenocrysts with reaction rims, oscillatory zoning, honeycomb and sieve textures in plagioclase, reverse mantled biotite and hornblende crystals. The plagioclase- amphibole geothermobarometry calculations of Balıkesir volcanites indicate that, andesite and dacite lavas present similar crystallization temperature and pressures conditions of 798- 813°C and 1,98- 2.17 kbar. Oppositely, trachyandesites were crystallized under 857°C and 3,72 kbar temperature and pressure conditions. These results show that the andesite and dacite lavas were originated from the same magma chamber with the depth of 7km whereas trachyandesites were evolved in a deeper magma chamber with 13 km depth. Combined mineral chemistry, petrography and geothermobarometry studies indicate that the open system processes such as magma mixing/mingling and/or assimilation fractional crystallization (AFC) were responsible for the textural and compositional variations of the Balıkesir Volcanites.</p>


Author(s):  
L. Barbero ◽  
C. Villaseca

ABSTRACTThe Layos Granite forms elongated massifs within the Toledo Complex of central Spain. It is late-tectonic with respect to the F2 regional phase and simultaneous with the metamorphic peak of the region, which reached a maximum temperature of 800–850°C and pressures of 400–600 MPa. Field studies indicate that this intrusion belongs to the “regional migmatite terrane granite” type. This granite is typically interlayered with sill-like veins and elongated bodies of cordierite/garnet-bearing leucogranites. Enclaves are widespread and comprise restitic types (quartz lumps, biotite, cordierite and sillimanite-rich enclaves) and refractory metamorphic country-rocks including orthogneisses, amphibolites, quartzites, conglomerates and calc-silicate rocks.These granites vary from quartz-rich tonalites to melamonzogranites and define a S-type trend on a QAP plot. Cordierite and biotite are the mafic phases of the rocks. The particularly high percentage of cordierite (10%–30%) varies inversely with the silica content. Sillimanite is a common accessory mineral, always included in cordierite, suggesting a restitic origin. The mineral chemistry of the Layos Granite is similar to that of the leucogranites and country-rock peraluminous granulites (kinzigites), indicating a close approach to equilibrium. The uniform composition of plagioclase (An25), the high albitic content of the K-feldspar, the continuous variation in the Fe/Mg ratios of the mafic minerals, and the high Ti content of the biotites (2.5–6.5%) suggest a genetic relationship.Geochemically, the Layos Granite is strongly peraluminous. Normative corundum lies between 4% and 10% and varies inversely with increase in SiO2. The CaO content is typically low (<1.25%) and shows little variation; similarly the LILE show a limited range. On many variation diagrams, linear trends from peraluminous granulites to the Layos Granite and associated leucogranite can be observed. The chemical characteristics argue against an igneous fractionation or fusion mechanism for the diversification of the Layos Granite. A restite unmixing model between a granulitic pole (represented by the granulites of the Toledo Complex) and a minimum melt (leucogranites) could explain the main chemical variation of the Layos Granite. Melting of a pelitic protolith under anhydrous conditions (biotite dehydration melting) could lead to minimum-temperature melt compositions and a strongly peraluminous residuum.For the most mafic granites (61–63% SiO2), it is estimated that the trapped restite component must have been around 65%. This high proportion of restite is close to the estimated rheological critical melt fraction, but field evidence suggests that this critical value has been exceeded. This high restite component implies high viscosity of the melt which, together with the anhydrous assemblage of the Layos Granite and the associated leucogranites, indicates H2O-undersaturated melting conditions. Under such conditions, the high viscosity magma (crystal-liquid mush) had a restricted movement capacity, leading to the development of parautochthonous plutonic bodies.


2000 ◽  
Vol 64 (3) ◽  
pp. 481-496 ◽  
Author(s):  
P. Fulignati ◽  
P. Marianelli ◽  
A. Sbrana

AbstractIn the 1944 Vesuvius eruption, the shallow magma chamber was disrupted during the highly energetic explosive phases. Abundant cognate xenoliths such as subvolcanic fergusites and cumulates, hornfels, skarns and rare marbles occur in tephra deposits.Mineral chemistry, melt inclusions in minerals and glassy matrix compositions show that fergusites (highly crystalline rocks made of leucite, clinopyroxene, plagioclase, olivine, apatite, oxides and glass) do not correspond to melt compositions but result from combined sidewall accumulation of crystals, formed from K-tephriphonolitic magma resident in the chamber, and in situ crystallization of the intercumulus melt. Very low H2O contents in the intercumulus glass are revealed by FTIR and apatite composition. Whole rock compositions are essentially determined by the bulk mineral assemblages.Glass–bearing fergusites constitute the outer shell of the magma chamber consisting of a highly viscous crystal mush with a melt content in the range 20–50 wt.%. The leucite/(clinopyroxene+olivine) modal ratio, varies with the extraction order of magmas from the chamber, decreasing upwards in the stratigraphic sequence. This reflects a vertical mineralogical zonation of the crystal mush. These data contribute to the interpretation of the subvolcanic low–pressure crystallization processes at the magma chamber sidewalls affecting alkaline potassic magmas.


2007 ◽  
Vol 71 (4) ◽  
pp. 389-406 ◽  
Author(s):  
Y. H. Dawood ◽  
H. H. Abd El-Naby

AbstractElectron microprobe analysis (EMPA) and microscopic investigations were performed on monazite grains from the black sand deposits of northern Sinai beach. Electron microprobe backscattered electron images, X-ray mapping and wavelength dispersive spectroscopy line scans showed some grains with sector zoning and others with thorite inclusions. Based on the EMPA data, the studied monazite is grouped into monazite-(Ce) and Th-rich monazite. Monazite-(Ce) is enriched in REE and P, whereas Th-rich monazite is enriched in Th, U, Ca, Y, Si and Fe. The compositional variations of monazite are governed by the substitution of REE by Th, U, Ca and Y. The monazite grains show enriched chondrite-normalized REE patterns represented mainly by LREE and only Gd from the HREE. These patterns demonstrate negative Nd and Euanomalies. The floods associated with the pluvial periods which prevailed in Egypt during the Pleistocene, were able to erode the source rocks and liberate heavy minerals including monazite. The mineral grains were transported through several wadis and tributaries to the main channel of the River Nile. At the confluence sites, these heavy minerals were mixed with Ethiopian and central African heavy mineral assemblages. The grains continued to move together downriver until being deposited in their current locations. The analytical results suggest that pegmatites and granites of the Eastern Desert are the most likely source of the monazite. However, due to the large area of the Nile watershed, other undiscovered sources are possible.


2012 ◽  
Vol 22 (01n02) ◽  
pp. 157-164
Author(s):  
AGNES G. REYES ◽  
WILLIAM J. TROMPETTER ◽  
IAN J. GRAHAM

Rocks and melt inclusions (MI) from 11 volcanic centers of the Kermadec-Tofua arc, in the South West Pacific, were petrographically studied prior to chemical analysis under the ion beam. The abundance of MI with daughter minerals are volcano-specific with the most abundant found in "U", Putoto, and Hinepuia volcanoes where >50% of MI contain daughter minerals. The B , Li , Cl and S contents in MI generally increase with the silica content of the rock. Fe , Ni , Mn , Cu and Zn are common in MI of all rock types but Mo , Hg and Cu have the highest concentrations in dacite-rhyodacites. The highest concentrations of B , Ti , V , Fe , Co and Mo occur in plagioclase MI; S , Ni , Ge and Hg in pyroxene MI; Cl and Li in quartz MI; and Cu , Zn and M in hornblende MI. Different ore-forming components in volcanic rocks can be correlated with rock composition, Cl/S and B/S of the melts, the presence and abundance of mineral sinks for various elements and the occurrence of hydrothermally altered rock at depth and on the seafloor.


2012 ◽  
Vol 192-193 ◽  
pp. 545-550 ◽  
Author(s):  
Mario Rosso ◽  
Ildiko Peter ◽  
Gianluigi Chiarmetta ◽  
Ivano Gattelli

This paper presents an analysis of a new rheocasting process suitable for the manufacturing of high performance automotive parts. The process is able for the realization of components using Al alloys. An important aspect is related to the possibility to obtain quite wide range of thicknesses, starting from 2.5 mm. The used alloy is the well known A356, with low Fe content, maximum 0.08 wt%. T6 heat treatments has been performed, while the soundness of the parts has been certified by non destructive tests. These parts are produced to be mounted on a top level and famous sport car. Non standard samples for mechanical tests have been machined directly from the components. Following the mechanical tests fracture surface analysis has been carried out by SEM to observe some morphological details and to evaluate the influence of the process and of the alloy conditions on the fracture behaviour. On the polished transverse sections of the samples morphological analysis has been performed. The obtained results shown high level of mechanical strength for all series of components. The reliability of the process is very high at a convenient level of manufacturing rate. The weldability of the parts has been demonstrated.


2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Win Kant ◽  
I Wayan Warmada ◽  
Arifudin Idrus ◽  
Lucas Donny Setijadji ◽  
Koichiro Watanabe

The Soripesa prospect area is located at Maria village, Wawo district, Bima region in the East Sumbawa Island, Indonesia. Lithology is dominantly composed of a lithic-crystal tuff of andesitic and dacitic composition and bedded limestone. The polymetallic epithermal quartz veins are hosted by andesitic volcaniclastic rocks. Within these veins, multiphases, colloform-crustiform, bedding to massive textures with pyrite, sphalerite, galena, chalcopyrite, chalcocite, azurite, and malachite are observed. Selected samples were analyzed by using ore microscopy and SEM-EDX. Ore minerals show replacement, ex-solution, colloform, and zonal textures. The paragenesis diagram was made from a careful study of polished sections and thin sections. Textures of ore minerals such as banded, exsolution, replacement, and zone, have been interpreted to correspond to the order of deposition. In pyrite, the average content of Co (0.45 wt.%) is higher than Ni content (0.14 wt.%) and it means that their origin may be hydrothermal origin. Average content ratio, Co:Ni is 2.81. Galena shows a low Ag content of 0.07 %in average. But they show a high Au content of 1.48 %in average. Sphalerite shows a low Fe content of 1.04 %in average and occasionally chalcopyrite inclusion/disease also occurred. Ga and Ge contents are also high in sphalerite. Co>Ni in pyrite, low content of Ag in Galena, low content of Fe and mole % FeS in sphalerite, high content of Ga and Ge, and log (Ga/Ge) in sphalerite, show that pyrite, galena, and sphalerite from Soripesa prospect area were formed under low temperature condition of hydrothermal fluid. Keywords: Ore textures, paragenesis, deposition, hydrothermal fluid, low temperature


Sign in / Sign up

Export Citation Format

Share Document