Perspective of the rehabilitation of marginal areas: the case of Lablab purpureus (L.) Sweet

Author(s):  
Patrícia Vidigal ◽  
Erisa S. Santos ◽  
Augusto Manuel Correia ◽  
Fernando Monteiro ◽  
Maria Manuela Abreu

<p>It is estimated that the world population reach 9.1 billion in 2050 resulting in increasing food demand and consumption, but also waste production. Moreover, to help achieve the goals set by the 2030 Agenda for Sustainable Development, it is imperative to develop sustainable strategies for the recovery marginal lands (e.g. landfills or abandoned mining areas) and create conditions for agriculture activities. Thus, there is a need to increase agricultural production and to create sustainable waste management approaches. Several landfills pose health and environmental concerns associated to non-selective deposition of wastes, which present potentially hazardous elements (PHE), and inexistence of environmental management systems. Therefore, leachates rich-in PHE can spread to adjacent areas leading to soil and water contamination. This is particularly concerning considering the growing rate of Sub-Saharan African (SSA) population that will be living in urban or peri-urban areas, and practice subsistence farming in those areas. For SSA it is estimated that by 2050 about 50% of the population will be living in towns and cities. The recovery of landfills, in addition to other environmental management measures, can involve the development of a secure plant cover that creates conditions for agriculture activities, while protecting the food-chain, but also improve environmental and landscape impacts. Plant species selected for green cover should have the ability to decrease the mobility or immobilize PHE in the rhizosphere. Furthermore, these plant species should also have low PHE translocation factors from the soil/roots to the shoots. Plants with these characteristics are not common, and it is necessary to increase our efforts to identify them. Moreover, in the scope of SSA it is important that these species should be native and known by the population. The study of African crops behaviour, such as <em>Lablab purpureus</em> (L.) Sweet, can be a promising option since Lablab shows the ability to accumulate PHE in the roots and low translocation factors from the soil/roots to the shoots, resulting the concentrations present in the shoots safe for animal consumption. It is important to point that the characteristics of each landfill can be totally different as well as climatic conditions where is located the landfill, thus the initial and multidisciplinary characterization of the study area is crucial. Moreover, the ecophysiological plant behaviours, namely PHE accumulation in the edible part, depends on plant species and edafoclimatic conditions, so more studies should be done in order to assess the impact in the food-chain.</p>

2019 ◽  
Author(s):  
Bambang Sulistyantara ◽  
Imawan W. Hidayat ◽  
A. Nasirudin Taher ◽  
Hendrawan

Trees are essential elements of an urban space. The presence of trees in urban areas is not only appreciated as physical attribute, but beyond this, it serves a fundamental function in balancing and conserving urban ecosystem. Especially in tropical countries like Indonesia which receive high levels of solar radiation, trees contribute to the protection of urban areas from the impact of excessive micro-climatic conditions. But, the presence of trees sometimes resulted in the accidents for the residences because of broken branches and human injuries. This situation leads the city to prepare a tree inventory system, which is beneficial in giving the information about tree conditions and thus the information that would be useful for tree maintenance activities. The tree inventory on application for the city of East Jakarta was built for this purpose, comprising a tree inventory and easy access to the database. The application connects the database source with the GIS map, so that the users could retrieve information for each kind of data.


2020 ◽  
Vol 8 (6) ◽  
pp. 2509-2512

Catchments are most important for the purpose of practicing irrigation and recharging groundwater by collecting water during the rainy season so that the nearby land will be in surplus quantity of groundwater due to the continues percolation of water from the catchments, even the stored water in the form of catchments will be used as an alternative water source for other requirements apart from the irrigation practices such as for industries and other developmental activities taking place nearby the catchments. Year by year it was noticed that in the world scenario the pollutant concentration is keep on increasing especially water and air pollution due to the excessive load of population that is increasing from the rural to urban areas [10]. Coming to water pollution the major portion of pollution is increasing in the surface water bodies [4] due to various activities like surface runoff, intentionally releasing of untreated effluents from the nearby industries into the catchments [8] and the agricultural runoff etc, whatever the reason there is an immediate need and an emergency to monitor these catchments as the average rainfall is gradually decreasing due to the changing climatic conditions like global warming which leads to the reduced availability of water in the surface water bodies at the other side the existing water is being contaminated [5] by the activities of nearby people. The impact will be severe when the same situation continues in the days to come where the living standards of the people will be decreased at a notable level and the impact will be much more severe on the irrigated land which depends on the catchments. The study has done at Kolleru Lake in west godavari district, Andhra Pradesh. Collected Six Water samples from six locations around the lake for analysis [7] and then the results of the analysis compared with Central Pollution Control Board 1979and Indian standards 1982 guidelines for water in the surface water bodies to find out the present scenario of lake water.


Author(s):  
Dasaraden Mauree ◽  
Silvia Coccolo ◽  
Dasun Perera ◽  
Vahid Nik ◽  
Jean-Louis Scartezzini ◽  
...  

Building more energy efficient and sustainable urban areas that will both mitigate the effect of climate change and adapt for the future climate, requires the development new tools and methods that can help urban planners, architect and communities achieve this goal. In the current study, we designed a workflow that links different methodologies developed separately, to derive the energy consumption of a university school campus for the future. Three different scenarios for typical future years (2039, 2069, 2099) were run as well as a renovation scenario (Minergie-P). We analyse the impact of climate change on the heating and cooling demand of the buildings and determined the relevance of the accounting of the local climate in this particular context. The results from the simulations showed that in the future there will a constant decrease in the heating demand while for the cooling demand there will be a significant increase. It was further demonstrated that when the local climate was taken into account there was an even higher rise in the cooling demand but also that the proposed renovations were not sufficient to design resilient buildings. We then discuss the implication of this work on the simulation of building energy consumption at the neighbourhood scale and the impact of future local climate on energy system design. We finally give a few perspective regarding improved urban design and possible pathways for the future urban areas.


Author(s):  
M. Akilan ◽  
S. Nandhakumar

The impact of air pollutants on the biochemical characters of the selected plant species from industrial and urban areas was studied by calculating ascorbic acid, total chlorophyll, leaf extract pH and relative water content from leaf tissues. The air pollution tolerance index (APTI) values of the selected plants of different study areas revealed that the APTI values of the plants at the College Farm recorded low compared to Arcot and Ranipet transporation and industrial areas. Among the selected plant species, higher APTI values were recorded from the industrial and urban areas. when compared to areas free from industries and transport. The four selected plant species <italic>viz</italic>. <italic>Neerium oleander, Tamarindus indicus, Azardirecta indica</italic> and <italic>Pungamia pinnata, Neerium oleander</italic> recorded higher APTI values from the industrial and transportation that revealed more tolerance than the other selected plants.The statistical results revealed that Arcot was more polluted compared to Ranipet, and the college farm recorded least polluted due to less exposure to industries, transport and urbanization.


2018 ◽  
Vol 22 (03) ◽  
pp. 41-45
Author(s):  
Bolormaa D ◽  
Lkhagvasuren D ◽  
Gantuya J ◽  
Gankhuyag L ◽  
Altanzul R

Rangeland deterioration and restoration management has been one of the prominent issues. The present study focuses on the composition, cover, and yields accumulation of rangeland plant species from different ecological zones and subzones. Pasture yield in Mongolia varies in ecological zones and subzones (p≥0.001), so 39 sheep, during the summer, comfortably graze in one-hectare area in high mountain zone, - 72 in forest steppe, 21 in steppe and 13 in arid steppe area respectively. Whereas types and cover of plant species in high mountain rangelands are more than other areas, yield accumulation is most in forest steppe. The impact of climate change has dramatically increased recent years, considerably affecting on pasture plant cover and yield. During a dry season or period of drought, amount of yield reduces 40% in high mountain zone; 49% in forest steppe, 52% in semi-arid steppe and 55% in arid steppe. Since rangeland productivity varies due to the nature and climate in the ecological zones and subzones, pasture shall be utilized under appropriate policy that regulates this depending on its capacity, resource and natural and climate feature of area.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Sónia Pinho ◽  
Bruno Ladeiro

In the recent years, search for better quality of life in urban areas has been provoking an increase in urban agriculture. However, this new way of agriculture can bring risks to human health since this land is highly contaminated, due to anthropogenic activities. This way, lead (Pb) phytotoxicity approach must be taken into consideration since it can be prejudicial to human health through food chain. Pb is a common environmental contaminant, which originate numerous disturbances in plant physiological processes due to the bioacummulation of this metal pollutant in plant tissues. This review, focus on the uptake and interaction of lead by plants and how it can be introduced in food chain. Special attention was taken to address the oxidative stress by lead regarding the effects produced in plant physiological and biochemical processes. Furthermore, the antioxidant defence system was taken into consideration. Phytoremediation is applied on site or chronic polluted soils. This emerging technique is useful to bioaccumulate, degrade or decrease risks associated with contaminants in soils, water or air through the use of hyperaccumulaters. In addition, the impact of nanoparticles in plant science was also focused in this article since some improving properties in plants have been increasingly investigated.


2017 ◽  
Vol 14 ◽  
pp. 217-226 ◽  
Author(s):  
Valentina Grasso ◽  
Alfonso Crisci ◽  
Marco Morabito ◽  
Paolo Nesi ◽  
Gianni Pantaleo

Abstract. Investigating on society-related heat wave hazards is a global issue concerning the people health. In the last two decades, Europe experienced several severe heat wave episodes with catastrophic effects in term of human mortality (2003, 2010 and 2015). Recent climate investigations confirm that this threat will represent a key issue for the resiliency of urban communities in next decades. Several important mitigation actions (Heat-Health Action Plans) against heat hazards have been already implemented in some WHO (World Health Organization) European region member states to encourage preparedness and response to extreme heat events. Nowadays, social media (SM) offer new opportunities to indirectly measure the impact of heat waves on society. Using the crowdsensing concept, a micro-blogging platform like Twitter may be used as a distributed network of mobile sensors that react to external events by exchanging messages (tweets). This work presents a preliminary analysis of tweets related to heat waves that occurred in Italy in summer 2015. Using TwitterVigilance dashboard, developed by the University of Florence, a sample of tweets related to heat conditions was retrieved, stored and analyzed for main features. Significant associations between the daily increase in tweets and extreme temperatures were presented. The daily volume of Twitter users and messages revealed to be a valuable indicator of heat wave impact at the local level, in urban areas. Furthermore, with the help of Generalized Additive Model (GAM), the volume of tweets in certain locations has been used to estimate thresholds of local discomfort conditions. These city-specific thresholds are the result of dissimilar climatic conditions and risk cultures.


2019 ◽  
Author(s):  
Bambang Sulistyantara ◽  
Imawan Wahyu Hidayat ◽  
A. Nasirudin Taher ◽  
Hendrawan

Trees are essential elements of an urban space. The presence of trees in urban areas is not only appreciated as physical attribute, but beyond this, it serves a fundamental function in balancing and conserving urban ecosystem. Especially in tropical countries like Indonesia which receive high levels of solar radiation, trees contribute to the protection of urban areas from the impact of excessive micro-climatic conditions. But, the presence of trees sometimes resulted in the accidents for the residences because of broken branches and human injuries. This situation leads the city to prepare a tree inventory system, which is beneficial in giving the information about tree conditions and thus the information that would be useful for tree maintenance activities. The tree inventory on application for the city of East Jakarta was built for this purpose, comprising a tree inventory and easy access to the database. The application connects the database source with the GIS map, so that the users could retrieve information for each kind of data.


Author(s):  
Caleb Mensah ◽  
Julia Atayi ◽  
Amos T. Kabo-bah ◽  
Marian Švik ◽  
Daniel Acheampong

The key anthropogenic effects on climate include the changes in land use and emission of greenhouse gases into the atmosphere. Depletion of vegetation poses serious threat that speeds the process of climate change and reduces carbon sequestration by the environment. Thus, the preservation of natural environment in urban areas is an essential component of the garden city model, proposed by Sir Ebenezer Howard in 1898, to ensure ecological balance. Recent Landsat images showed that Kumasi does not have the required percentage of green vegetation as was stipulated in the garden city model on which the city was built. It was observed that most parts of Kumasi's green vegetation have been lost to built environments. This study was conducted to assess the impact of urbanization on the garden city status and its effect on the micro-climate of the city. Significant changes in the vegetation cover of the city was evaluated from Landsat-TM imagery and analysis of a long term climatic data of Kumasi carried out over a 55-year period (1960 to 2015). It was observed that, climatic conditions have slightly changed, as mean surface temperature of has increased by 1.2 &deg;C/ 55 years, due to the significant landuse changes from development of non-transpiring, reduced evaporative urban surfaces. However, the impact is not greatly felt due to the geographical location of the city on the globe despite the evidence of a considerable temperature change. Green vegetation conservation for the city is recommended as a top priority in future for city authorities and planners.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Danuta Sugier ◽  
Piotr Sugier ◽  
Urszula Gawlik-Dziki

Arnica montana(L.) is an endangered and endemic medicinal plant species in Europe. The pressure on natural sources of this plant is alleviated by a suitable use of arnica resources in the European region and introduction into cultivation. The objective of this study was to describe the impact of different ways of plant propagation and introduction on the growth and reproduction mode of this species. During the six consecutive years of the field experiment, the vegetative and reproductive traits were monitored, and survival time was assessed. The particular ways of arnica plant propagation and introduction determined all the intrinsic species traits and plant survival. The values of the characteristics studied indicated good acclimatization of the arnica ecotype to the climatic conditions of eastern Poland. Practical implications from the data presented here include the possibility of using the presented modes of arnica propagation and introduction in the short- and long-term perspective of arnica cultivation, which can give a possibility of better adjustment of raw material production.


Sign in / Sign up

Export Citation Format

Share Document