Resilience of the Alsatian aquifer, France to climate and anthropogenic change: A case study of the Grand Ried

Author(s):  
Agnès Labarchède ◽  
Carmen de Jong ◽  
Élodie Giuglaris ◽  
Serge Dumont

<p>The vulnerability of the Alsatian aquifer to climate change and water abstraction has hardly been investigated whilst climate change impacts such as decreasing snowfall, droughts and heat waves are becoming stronger and water abstraction for irrigation is seasonally intensifying as a result. Despite being influenced by a European temperate climate, seasonal drying up of groundwater-fed streams has been recently observed in the region of the Grand Ried of the Middle Alsatian Plain and drought decrees in Alsace have intensified. The Alsatian aquifer, an alluvial aquifer located on the French side of the Upper Rhine, belongs to one of the largest aquifers in Europe. It not only provides drinking water to approximately 1.5 million inhabitants but is also a highly important water supply for industry and agriculture. This study aims to improve our understanding of the interactions between groundwater levels of the Alsatian aquifer and river discharge during drought periods. Lying within the Upper Rhine Graben, this complex basin is flanked by the Vosges and Black Forest mountains to the West and East respectively. As such, the aquifer is influenced by both the River Rhine, its main tributaries and the Vosges mountains. At present, it is difficult to differentiate climate and anthropogenic signals in groundwater level lowering during the summer. In this study, spatial and temporal correlations of river discharge and groundwater levels were analysed based on meteorological and hydrological data available since 1955 from national and regional agencies and will form the base for hydrogeological modelling in the next phase. High resolution field data enables to capture complex interactions and for this purpose an intensive interdisciplinary field study was carried out in the summer. Water levels of 7 groundwater-fed streams, including 3 springs, were recorded automatically at hourly time steps and accompanied by manual measurements of temperature, dissolved oxygen and turbidity as well as biological observations. Streams show subdaily water level variations mainly due to evapotranspiration and water withdrawals for irrigation. Even though irrigation represents on average only 18.5% of annual groundwater abstraction in the Alsace region over a territory that is 50% agricultural, water withdrawals are concentrated over a few months in summer and their impacts are visible. Climate change has decreased snow storage and snow water equivalent as well as increased periods without precipitation and thereby increased evapotranspiration over the last decades. The challenge is to determine whether irrigation effects are stronger than evapotranspiration which would imply that water abstraction impact could outweigh that of climate change during summer droughts. Because they can affect the sustainability of drinking water supply, biodiversity and economic activities, awareness on droughts impacts and water abstraction should be increased.</p>

2013 ◽  
Vol 5 (1) ◽  
pp. 27 ◽  
Author(s):  
Ahumada Gerardo ◽  
Bustos David ◽  
González María

BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Anna L. K. Nilsson ◽  
Thomas Skaugen ◽  
Trond Reitan ◽  
Jan Henning L’Abée-Lund ◽  
Marlène Gamelon ◽  
...  

Abstract Background Earlier breeding is one of the strongest responses to global change in birds and is a key factor determining reproductive success. In most studies of climate effects, the focus has been on large-scale environmental indices or temperature averaged over large geographical areas, neglecting that animals are affected by the local conditions in their home ranges. In riverine ecosystems, climate change is altering the flow regime, in addition to changes resulting from the increasing demand for renewable and clean hydropower. Together with increasing temperatures, this can lead to shifts in the time window available for successful breeding of birds associated with the riverine habitat. Here, we investigated specifically how the environmental conditions at the territory level influence timing of breeding in a passerine bird with an aquatic lifestyle, the white-throated dipper Cinclus cinclus. We relate daily river discharge and other important hydrological parameters, to a long-term dataset of breeding phenology (1978–2015) in a natural river system. Results Dippers bred earlier when winter river discharge and groundwater levels in the weeks prior to breeding were high, and when there was little snow in the catchment area. Breeding was also earlier at lower altitudes, although the effect dramatically declined over the period. This suggests that territories at higher altitudes had more open water in winter later in the study period, which permitted early breeding also here. Unexpectedly, the largest effect inducing earlier breeding time was territory river discharge during the winter months and not immediately prior to breeding. The territory river discharge also increased during the study period. Conclusions The observed earlier breeding can thus be interpreted as a response to climate change. Measuring environmental variation at the scale of the territory thus provides detailed information about the interactions between organisms and the abiotic environment.


2010 ◽  
Vol 1 (1) ◽  
pp. 2-16 ◽  
Author(s):  
Guy Howard ◽  
Katrina Charles ◽  
Kathy Pond ◽  
Anca Brookshaw ◽  
Rifat Hossain ◽  
...  

Drinking-water supply and sanitation services are essential for human health, but their technologies and management systems are potentially vulnerable to climate change. An assessment was made of the resilience of water supply and sanitation systems against forecast climate changes by 2020 and 2030. The results showed very few technologies are resilient to climate change and the sustainability of the current progress towards the Millennium Development Goals (MDGs) may be significantly undermined. Management approaches are more important than technology in building resilience for water supply, but the reverse is true for sanitation. Whilst climate change represents a significant threat to sustainable drinking-water and sanitation services, through no-regrets actions and using opportunities to increase service quality, climate change may be a driver for improvements that have been insufficiently delivered to date.


2021 ◽  
Author(s):  
Katalin Demeter ◽  
Julia Derx ◽  
Jürgen Komma ◽  
Juraj Parajka ◽  
Jack Schijven ◽  
...  

<p><strong>Background</strong>: Rivers are important sources for drinking water supply, however, they are often impacted by wastewater discharges from wastewater treatment plants (WWTP) and combined sewer overflows (CSO). Reduction of the faecal pollution burden is possible through enhanced wastewater treatment or prevention of CSOs. Few methodological efforts have been made so far to investigate how these measures would affect the long-term treatment requirements for microbiologically safe drinking water supply under future changes.</p><p><strong>Objectives</strong>: This study aimed to apply a new integrative approach to decipher the interplay between the effects of future changes and wastewater management measures on the required treatment of river water to produce safe drinking water. We investigated scenarios of climate change and population growth, in combination with different wastewater management scenarios (i.e., no upgrades and upgrades at WWTPs, CSOs, and both). To the best of our knowledge, this is the first study to investigate this interplay. We focussed on the viral index pathogens norovirus and enterovirus and made a cross-comparison with a bacterial and a protozoan reference pathogen (Campylobacter and Cryptosporidium).</p><p><strong>Methods</strong>: We significantly extended QMRAcatch (v1.0 Python), a probabilistic-deterministic model that combines virus fate and transport modelling in the river with quantitative microbial risk assessment (QMRA). To investigate the impact of climatic changes, we used a conceptual semi-distributed hydrological model and regional climate model outputs to simulate river discharges for the period 2035 – 2049. We assumed that population growth leads to a corresponding increase in WWTP discharges. QMRAcatch was successfully calibrated and validated based on a four-year dataset of a human-associated genetic MST marker and enterovirus. The study site was the Danube in Vienna, Austria.</p><p><strong>Results</strong>: In the reference scenario, approx. 98% of the enterovirus and norovirus loads at the study site (median: 10<sup>10</sup> and 10<sup>13</sup> N/d) originated from WWTP effluent, while the remainder was via CSO events. The required log reduction value (LRV) to produce safe drinking water was 6.3 and 8.4 log<sub>10</sub> for enterovirus and norovirus. Future changes in population size, river flows and CSO events did not affect these treatment requirements, and neither did the prevention of CSOs. In contrast, in the scenario of enhanced wastewater treatment, which showed lower LRVs by 2.0 and 1.3 log<sub>10</sub>, climate-change-driven increases in CSO events had a considerable impact on the treatment requirements, as they affected the main pollution source. Preventing CSOs and installing enhanced treatment at the WWTPs together had the most significant positive effect with a reduction of LRVs by 3.9 and 3.8 log<sub>10</sub> compared to the reference scenario.</p><p><strong>Conclusions</strong>: The integrative modelling approach was successfully realised. The simultaneous consideration of source apportionment and concentrations of the reference pathogens were found crucial to understand the interplay among the effects of climate change, population growth and pollution control measures. The approach was demonstrated for a study site representing a large river impacted by WWTP and CSO discharges, but is applicable at other sites to support long term water safety planning.</p>


2019 ◽  
Vol 11 (8) ◽  
pp. 2450 ◽  
Author(s):  
Noora Veijalainen ◽  
Lauri Ahopelto ◽  
Mika Marttunen ◽  
Jaakko Jääskeläinen ◽  
Ritva Britschgi ◽  
...  

Severe droughts cause substantial damage to different socio-economic sectors, and even Finland, which has abundant water resources, is not immune to their impacts. To assess the implications of a severe drought in Finland, we carried out a national scale drought impact analysis. Firstly, we simulated water levels and discharges during the severe drought of 1939–1942 (the reference drought) in present-day Finland with a hydrological model. Secondly, we estimated how climate change would alter droughts. Thirdly, we assessed the impact of drought on key water use sectors, with a focus on hydropower and water supply. The results indicate that the long-lasting reference drought caused the discharges to decrease at most by 80% compared to the average annual minimum discharges. The water levels generally fell to the lowest levels in the largest lakes in Central and South-Eastern Finland. Climate change scenarios project on average a small decrease in the lowest water levels during droughts. Severe drought would have a significant impact on water-related sectors, reducing water supply and hydropower production. In this way drought is a risk multiplier for the water–energy–food security nexus. We suggest that the resilience to droughts could be improved with region-specific drought management plans and by including droughts in existing regional preparedness exercises.


2020 ◽  
Author(s):  
Carolina Cantone ◽  
Helen Ivars Grape ◽  
Joel Dahné ◽  
Johan Andreasson ◽  
Mats Kindahl ◽  
...  

<p>Water management is strongly dependent both on the short-term and seasonal variability of weather patterns. The increase in evapotranspiration and temporal shift of snow melt due to temperature rise is expected to have strong impact on water resources in Sweden with risk of severe deficit in summer and surplus in winter. For drinking water producers and freshwater managers a good understanding of the current hydro-meteorological situation is essential to ensure both urban water supply and compliance of water regulations.</p><p>This study is the result of collaboration between SMHI and Nodra, the municipal water company in Norrköping, Sweden. In 2016, warmer temperatures and reduced precipitation rates led to very low water levels in a ground water treatment plant used to supply drinking water to Kolmården, a region highly influenced by tourism in the summer season. This raised the need of monitoring freshwater availability and hydrological seasonal forecasts to be implemented for ensuring optimal water usage. To this end, a hydrological model is setup to simulate the water balance in freshwater reservoirs for evaluating groundwater recharge in the soil. Short to medium range (1-10 days) weather forecasts and seasonal climatological forecasts (6 months ahead) of water levels are produced at the local scale. Aiming at supporting long-term water planning, different management strategies of water withdrawal are used to feed the operational forecasting systems to assess groundwater availability in the following months.</p><p>Within the framework of the Horizon 2020 CLARA project; SMHI co-developed Aqua, a water supply assessment service tailored to the needs of public authorities and private companies involved in the water supply sector. Aqua includes a web-based platform that incorporates real-time station observations of precipitation, temperature, water levels, water discharge and raw water withdrawal.  Forecasts of relevant hydro-meteorological modelled parameters are also included and presented in an intuitive way through maps, graphs and tables. To overcome the challenges of communicating results of the probabilistic component of hydrological seasonal forecasts to the users, the visualization of forecasted groundwater levels is kept simple, whilst the provision of historical values allows an easy comparison against normal conditions.</p><p>The availability of tools displaying observations, modelled results and forecasts facilitates the understanding of the current hydro-meteorological situations as well as future wet/dry periods also to non-expert users, increasing preparedness of public and private organizations to extreme conditions while ensuring water security. Operational since March 2019, the Aqua service has provided Nodra with valuable insights for planning of groundwater withdrawal and decision support for coping with water scarcity, showing the potential of the co-generated hydro-climate service to bridge the gap between operational management and scientific innovation.</p>


2010 ◽  
Vol 14 (5) ◽  
pp. 783-799 ◽  
Author(s):  
P. Döll ◽  
J. Zhang

Abstract. River flow regimes, including long-term average flows, seasonality, low flows, high flows and other types of flow variability, play an important role for freshwater ecosystems. Thus, climate change affects freshwater ecosystems not only by increased temperatures but also by altered river flow regimes. However, with one exception, transferable quantitative relations between flow alterations and ecological responses have not yet been derived. While discharge decreases are generally considered to be detrimental for ecosystems, the effect of future discharge increases is unclear. As a first step towards a global-scale analysis of climate change impacts on freshwater ecosystems, we quantified the impact of climate change on five ecologically relevant river flow indicators, using the global water model WaterGAP 2.1g to simulate monthly time series of river discharge with a spatial resolution of 0.5 degrees. Four climate change scenarios based on two global climate models and two greenhouse gas emissions scenarios were evaluated. We compared the impact of climate change by the 2050s to the impact of water withdrawals and dams on natural flow regimes that had occurred by 2002. Climate change was computed to alter seasonal flow regimes significantly (i.e. by more than 10%) on 90% of the global land area (excluding Greenland and Antarctica), as compared to only one quarter of the land area that had suffered from significant seasonal flow regime alterations due to dams and water withdrawals. Due to climate change, the timing of the maximum mean monthly river discharge will be shifted by at least one month on one third on the global land area, more often towards earlier months (mainly due to earlier snowmelt). Dams and withdrawals had caused comparable shifts on less than 5% of the land area only. Long-term average annual river discharge is predicted to significantly increase on one half of the land area, and to significantly decrease on one quarter. Dams and withdrawals had led to significant decreases on one sixth of the land area, and nowhere to increases. Thus, by the 2050s, climate change may have impacted ecologically relevant river flow characteristics more strongly than dams and water withdrawals have up to now. The only exception refers to the decrease of the statistical low flow Q90, with significant decreases both by past water withdrawals and future climate change on one quarter of the land area. However, dam impacts are likely underestimated by our study. Considering long-term average river discharge, only a few regions, including Spain, Italy, Iraq, Southern India, Western China, the Australian Murray Darling Basin and the High Plains Aquifer in the USA, all of them with extensive irrigation, are expected to be less affected by climate change than by past anthropogenic flow alterations. In some of these regions, climate change will exacerbate the discharge reductions, while in others climate change provides opportunities for reducing past reductions. Emissions scenario B2 leads to only slightly reduced alterations of river flow regimes as compared to scenario A2 even though emissions are much smaller. The differences in alterations resulting from the two applied climate models are larger than those resulting from the two emissions scenarios. Based on general knowledge about ecosystem responses to flow alterations and data related to flow alterations by dams and water withdrawals, we expect that the computed climate change induced river flow alterations will impact freshwater ecosystems more strongly than past anthropogenic alterations.


2020 ◽  
Vol 1 (22) ◽  
Author(s):  
Sanel Buljubašić

Freshwater water resources are not inexhaustible [1]. In recent decades, more and more facts point to this statement from the European Charter for Water. Uncontrolled drinking water interventions, losses in water supply and climate change indicate the problem of sufficient quantities of drinking water [2]. Looking at this problem, it is hard to believe that new quantities of drinking water can be produced. The model of integrated water management has been increasingly used in recent years. The application of new technologies in water supply creates conditions for the controlled management of water intakes and losses in water supply. Each water sapply system needs to develop its own model for integrated water management.


2020 ◽  
Author(s):  
◽  
Mpumelelo Dolo

Water is regarded as the most important substance found on earth. There is no substitute for it. The daily running of production businesses, industrial firms and agricultural production that help sustain the economy of countries are largely dependent on the availability of water for them to function. The importance of water cannot be over emphasised. The food which is consumed daily depends on water; it can therefore be safely concluded that without water there would be no food, and without food there would be no life. Despite the importance of water in relation to human life, animals and plants, research studies show that the its availability becoming increasingly deficient around the globe. Water levels of major dams and rivers around the world are dropping, limiting the supply of potable water to those dependent on them. Global warming is one factor that is influencing the dropping of water levels, through evaporation. Other factors include climate change, drought and population growth. In South Africa, the government has been fighting a continuous battle of trying to address the backlog of water infrastructure, particularly in the areas which were disadvantaged by the apartheid government. These areas include rural areas, small towns (semi-urban) and townships. The Eastern Cape province in South Africa is top of the list from a backlog point of view. Rural dwellers migrate to urban areas for various reasons such as better education, better health care, job opportunities and more efficient services. Water supply is one of the services which is more adequately supplied in the cities compared to the rural areas. Even though the supplied water in the urban areas of the Eastern Cape is not the best standard when compared to other cities around the country or the world, it is still at an acceptable standard. Thus, this study was conducted to seek ways of improving the supply of water in the urban and rural areas of the Eastern Cape. The availability and the quality of water differs between the urban and rural areas. The purpose of this study was to seek ways of bridging the gap between these areas while improving the standard of water supply in both rural and urban areas. While working towards improving the lives of the Eastern Cape people, the study also seeks to promote water preservation and awareness to the people of the province. In order to find better alternatives which have been tested in various places around the world, an in-depth literature review was conducted in the study. This functioned as an effective comparison of what is obtained in different places around the world and the context of this study, which is the Eastern Cape. A survey method was used to gather data regarding the problems surrounding water supply and options that could be adopted to remedy those problems. The survey was conducted in the form of a self-observation assessment, questionnaire for households in urban and rural areas and interview sessions with prominent government entities and local technical service providers. The survey covered the whole spectrum of individuals and groups that play a major role in the supply and usage of water. The study was conducted within three municipalities of the Eastern Cape. These municipalities cover approximately two-third of the Eastern Cape considering the size of population in those areas. The municipalities covered by the study were: Amathole District Municipality (ADM), Buffalo City Metropolitan Municipality (BCMM) and OR Tambo District Municipality (ORTDM). The findings from the study showed that indeed the standard of water supply between urban and rural areas was not equal. This relates to the purification methods, the convenience of collecting water by users, the quality of infrastructure being constructed (due to good or poor monitoring during construction) and the quality of the water as well as operation and maintenance response from the various service providers. Moreover, it was found that there was an acceptable level of awareness by citizens when it comes to using water, and precautions to save it were being taken by some. However, some dominant factors such as poor management, poor infrastructure resulting in leaks, climate change, run-offs and population growth were putting a strain on the existing water resources which is not coping with the increasing demand by people. Recommendations made in the study to balance the supply of water in rural areas and urban areas include: improving the purification of water so as to achieve a standard quality within the Eastern Cape; that rural areas be allowed to have an option of having yard or house connections, particularly those who are willing to pay rates at a scale suiting their class or standard; and that water service providers make it their responsibility to extend reticulation networks if there is expansion or development of more houses in rural areas in order to keep the distance minimal to standpipes


Sign in / Sign up

Export Citation Format

Share Document