scholarly journals The in-situ exploration of Jupiter's radiation belts

Author(s):  
Elias Roussos ◽  

<p>Jupiter has the most energetic and complex radiation belts in our solar system. Their hazardous environment is the reason why so many spacecraft avoid rather than investigate them, and explains how they have kept many of their secrets so well hidden, despite having been studied for decades. We believe that these secrets are worth unveiling, as Jupiter’s radiation belts and the vast magnetosphere that encloses them constitute an unprecedented physical laboratory, suitable for both interdisciplinary and novel scientific investigations: From studying fundamental high energy plasma physics processes which operate throughout the universe, such as adiabatic charged particle acceleration and nonlinear wave-particle interactions; to exploiting the astrobiological consequences of energetic particle radiation. The in-situ exploration of the uninviting environment of Jupiter’s radiation belts presents us with many challenges in mission design, science planning, instrumentation and technology development. We address these challenges by reviewing the different options that exist for direct and indirect observation of this unique system. We stress the need for new instruments, the value of synergistic Earth and Jupiter-based remote sensing and in-situ investigations, and the vital importance of multi-spacecraft, in-situ measurements. While simultaneous, multi-point in-situ observations have long become the standard for exploring electromagnetic interactions in the inner solar system, they have never taken place at Jupiter or any strongly magnetized planet besides Earth. We conclude that a dedicated multi-spacecraft mission to Jupiter’s radiation belts is an essential and obvious way forward. Besides guaranteeing many discoveries and outstanding progress in our understanding of planetary radiation belts, it offers a number of opportunities for interdisciplinary science investigations. For all these reasons, the exploration of Jupiter’s radiation belts deserves to be given a high priority in the future exploration of our solar system. A White Paper on this subject was submitted in response to ESA's Voyage 2050 call.</p>

Author(s):  
Elias Roussos ◽  
Oliver Allanson ◽  
Nicolas André ◽  
Bruna Bertucci ◽  
Graziella Branduardi-Raymont ◽  
...  

AbstractJupiter has the most complex and energetic radiation belts in our Solar System and one of the most challenging space environments to measure and characterize in-depth. Their hazardous environment is also a reason why so many spacecraft avoid flying directly through their most intense regions, thus explaining how Jupiter’s radiation belts have kept many of their secrets so well hidden, despite having been studied for decades. In this paper we argue why these secrets are worth unveiling. Jupiter’s radiation belts and the vast magnetosphere that encloses them constitute an unprecedented physical laboratory, suitable for interdisciplinary and novel scientific investigations: from studying fundamental high energy plasma physics processes which operate throughout the Universe, such as adiabatic charged particle acceleration and nonlinear wave-particle interactions, to exploiting the astrobiological consequences of energetic particle radiation. The in-situ exploration of the uninviting environment of Jupiter’s radiation belts presents us with many challenges in mission design, science planning, instrumentation, and technology. We address these challenges by reviewing the different options that exist for direct and indirect observations of this unique system. We stress the need for new instruments, the value of synergistic Earth and Jupiter-based remote sensing and in-situ investigations, and the vital importance of multi-spacecraft in-situ measurements. While simultaneous, multi-point in-situ observations have long become the standard for exploring electromagnetic interactions in the inner Solar System, they have never taken place at Jupiter or any strongly magnetized planet besides Earth. We conclude that a dedicated multi-spacecraft mission to Jupiter is an essential and obvious way forward for exploring the planet’s radiation belts. Besides guaranteeing numerous discoveries and huge leaps in our understanding of radiation belt systems, such a mission would also enable us to view Jupiter, its extended magnetosphere, moons, and rings under new light, with great benefits for space, planetary, and astrophysical sciences. For all these reasons, in-situ investigations of Jupiter’s radiation belts deserve to be given a high priority in the future exploration of our Solar System. This article is based on a White Paper submitted in response to the European Space Agency’s call for science themes for its Voyage 2050 programme.


2016 ◽  
Vol 34 (1) ◽  
pp. 75-84 ◽  
Author(s):  
V. Pierrard ◽  
G. Lopez Rosson

Abstract. With the energetic particle telescope (EPT) performing with direct electron and proton discrimination on board the ESA satellite PROBA-V, we analyze the high-resolution measurements of the charged particle radiation environment at an altitude of 820 km for the year 2015. On 17 March 2015, a big geomagnetic storm event injected unusual fluxes up to low radial distances in the radiation belts. EPT electron measurements show a deep dropout at L > 4 starting during the main phase of the storm, associated to the penetration of high energy fluxes at L < 2 completely filling the slot region. After 10 days, the formation of a new slot around L = 2.8 for electrons of 500–600 keV separates the outer belt from the belt extending at other longitudes than the South Atlantic Anomaly. Two other major events appeared in January and June 2015, again with injections of electrons in the inner belt, contrary to what was observed in 2013 and 2014. These observations open many perspectives to better understand the source and loss mechanisms, and particularly concerning the formation of three belts.


1971 ◽  
Vol 12 ◽  
pp. 489-501
Author(s):  
Ernst Stuhlinger

The landings of instrumented probes and astronauts on the Moon and the short glimpses at Venus and Mars that distinguished the spaceflight program of the last decade yielded such an impressive wealth of new knowledge that the President, in his programmatic speech of 1970, mentioned the continuing exploration of the solar system as one of the national goals during the decade of the seventies.This exploration will be accomplished with unmanned spacecraft, except for the remaining three Apollo flights in 1971 and 1972 and Skylab in 1973. Planetary exploration will include photographic coverage of the surfaces of the celestial bodies; closeup pictures of specific surface features; magnetic and gravitational measurements; observations of atmospheres, ionospheres, and radiation belts; analysis of surface material in situ; and, as far as possible, the return of surface samples for careful chemical and mineralogical analyses and for age determinations.


2008 ◽  
Vol 4 (T27A) ◽  
pp. 347-355
Author(s):  
Günther Hasinger ◽  
Christine Jones ◽  
Haruyuki Okuda ◽  
João Braga ◽  
Noah Brosch ◽  
...  

Division XI connects astronomers using space techniques or particle detectors for an extremely large range of investigations, from in-situ studies of bodies in the solar system to orbiting observatories studying the Universe in wavelengths ranging from radio waves to γ-rays, to underground detectors for cosmic neutrino radiation.


2007 ◽  
Vol 3 (T26B) ◽  
pp. 205-206
Author(s):  
Haruyuki Okuda ◽  
Guenther Hasinger ◽  
Ganesan Srinivasan ◽  
Monique D. Arnaud ◽  
Sidney A. Bludman ◽  
...  

Division XI connects astronomers using space techniques or particle detectors for an extremely large range of investigations, from in-situ studies of bodies in the solar system to orbiting observatories studying the Universe in wavelenghts ranging from radio waves to γ-rays, to underground detectors for cosmic neutrino radiation.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Author(s):  
Charles W. Allen

Irradiation effects studies employing TEMs as analytical tools have been conducted for almost as many years as materials people have done TEM, motivated largely by materials needs for nuclear reactor development. Such studies have focussed on the behavior both of nuclear fuels and of materials for other reactor components which are subjected to radiation-induced degradation. Especially in the 1950s and 60s, post-irradiation TEM analysis may have been coupled to in situ (in reactor or in pile) experiments (e.g., irradiation-induced creep experiments of austenitic stainless steels). Although necessary from a technological point of view, such experiments are difficult to instrument (measure strain dynamically, e.g.) and control (temperature, e.g.) and require months or even years to perform in a nuclear reactor or in a spallation neutron source. Consequently, methods were sought for simulation of neutroninduced radiation damage of materials, the simulations employing other forms of radiation; in the case of metals and alloys, high energy electrons and high energy ions.


Author(s):  
Charles W. Allen

With respect to structural consequences within a material, energetic electrons, above a threshold value of energy characteristic of a particular material, produce vacancy-interstial pairs (Frenkel pairs) by displacement of individual atoms, as illustrated for several materials in Table 1. Ion projectiles produce cascades of Frenkel pairs. Such displacement cascades result from high energy primary knock-on atoms which produce many secondary defects. These defects rearrange to form a variety of defect complexes on the time scale of tens of picoseconds following the primary displacement. A convenient measure of the extent of irradiation damage, both for electrons and ions, is the number of displacements per atom (dpa). 1 dpa means, on average, each atom in the irradiated region of material has been displaced once from its original lattice position. Displacement rate (dpa/s) is proportional to particle flux (cm-2s-1), the proportionality factor being the “displacement cross-section” σD (cm2). The cross-section σD depends mainly on the masses of target and projectile and on the kinetic energy of the projectile particle.


Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


Author(s):  
Yoshichika Bando ◽  
Takahito Terashima ◽  
Kenji Iijima ◽  
Kazunuki Yamamoto ◽  
Kazuto Hirata ◽  
...  

The high quality thin films of high-Tc superconducting oxide are necessary for elucidating the superconducting mechanism and for device application. The recent trend in the preparation of high-Tc films has been toward “in-situ” growth of the superconducting phase at relatively low temperatures. The purpose of “in-situ” growth is to attain surface smoothness suitable for fabricating film devices but also to obtain high quality film. We present the investigation on the initial growth manner of YBCO by in-situ reflective high energy electron diffraction (RHEED) technique and on the structural and superconducting properties of the resulting ultrathin films below 100Å. The epitaxial films have been grown on (100) plane of MgO and SrTiO, heated below 650°C by activated reactive evaporation. The in-situ RHEED observation and the intensity measurement was carried out during deposition of YBCO on the substrate at 650°C. The deposition rate was 0.8Å/s. Fig. 1 shows the RHEED patterns at every stage of deposition of YBCO on MgO(100). All the patterns exhibit the sharp streaks, indicating that the film surface is atomically smooth and the growth manner is layer-by-layer.


Sign in / Sign up

Export Citation Format

Share Document