Improved parameterization of sediment trapping in VFSMOD

Author(s):  
Stefan Reichenberger ◽  
Robin Sur ◽  
Carolin Kley ◽  
Stephan Sittig ◽  
Sebastian Multsch

<p>The most widely implemented mitigation measure to reduce transfer of pesticides and other pollutants to surface water bodies via surface runoff are vegetative filter strips (VFS). To reliably model the reduction of surface runoff, eroded sediment and pesticide inputs into surface water by VFS in a risk assessment context, an event-based model is needed. The most commonly used dynamic, event-based model for this purpose is VFSMOD. VFSMOD simulates reduction of total inflow (ΔQ) and reduction of incoming eroded sediment load (ΔE) mechanistically. These variables are subsequently used to calculate the reduction of pesticide load by the VFS (ΔP). There are several options in VFSMOD to calculate ΔP, notably the empirical Sabbagh equation (either with original or revised regression coefficients) and a regression-free, mechanistic mass-balance approach (Reichenberger et al., 2017).</p><p>Four studies with 16 hydrological events were selected from the experimental data compiled by Reichenberger et al. (2019), representing different levels of data availability and uncertainty. A first set of VFSMOD simulations, with parameterization according to the settings in the tool SWAN-VFSMOD, was run with the aim to compare the performance of the different pesticide trapping equations.  The simulations yielded a general overestimation of ΔE, suggesting that the SWAN-VFSMOD parameterization of sediment filtration is too optimistic. However, a reliable prediction of ΔE is important for the reliability of predicted ΔP, in particular for strongly sorbing compounds.</p><p>In a second step, a maximum-likelihood-based calibration and uncertainty analysis with the DREAM-ZS algorithm was performed for each hydrological event and the target variables ΔQ and ΔE. Overall a good match of measured ΔQ and ΔE was achieved, but only a few parameters could be well constrained.</p><p>In a third step, in order to reduce the observed equifinality, the hydraulic parameters were fixed to the best parameter sets obtained during the second phase, and only sediment filtration parameters were calibrated with DREAM-ZS.</p><p>The most important parameter characterizing the incoming sediment in VFSMOD is the median particle diameter DP. A set of empirical equations to predict DP from soil texture (Foster et al., 1985) was used as supporting information in the calibration of DP.         </p><p>The poster will present an improved, generic parameterization methodology for sediment trapping in VFSMOD that can be used for regulatory VFS scenarios.</p>

2021 ◽  
Author(s):  
Stefan Reichenberger ◽  
Robin Sur ◽  
Stephan Sittig ◽  
Sebastian Multsch ◽  
Rafael Muñoz-Carpena

<p>The most widely implemented mitigation measure to reduce transfer of pesticides to surface water bodies via surface runoff are vegetative filter strips (VFS). To reliably model the reduction of surface runoff, eroded sediment and pesticide load by VFS an event-based model is needed. The most commonly used model for this purpose is VFSMOD. VFSMOD simulates reduction of total inflow (∆Q) and reduction of incoming eroded sediment load (∆E) mechanistically. These variables are subsequently used to calculate the reduction of pesticide load (∆P). While ∆P can be relatively well predicted from ∆Q, ∆E and some other variables, errors in ∆Q and ∆E will propagate to ∆P. Hence, for strongly sorbing compounds, an accurate prediction of ∆E is crucial. The most important parameter characterizing the incoming sediment in VFSMOD is the median particle diameter d50. The objective of this study was to derive a generic d50 parameterization methodology for sediment trapping in VFSMOD that can be readily used for regulatory VFS scenarios.</p><p>Four studies with 16 hydrological events were selected for modelling. A first set of VFSMOD simulations, following the SWAN-VFSMOD sediment parameterization with d50 = 20 µm yielded a general overestimation of ∆E. Consequently, a maximum-likelihood-based calibration and uncertainty analysis with the DREAM-ZS algorithm was performed for the 16 events. The resulting d50 values were all in the low range (1.3-5.4 µm) and did not allow to establish a robust relationship to predict a wider range of d50 from the available explanatory variables. To increase the sample size and the range of d50 values, the comprehensive Kinston dataset for a loamy sand in North Carolina was calibrated with DREAM-ZS. Calibration was performed separately for each hydrological event. Further data points with measured particle size distributions in run-on were assimilated from the literature. The extended test data set of d50 values and explanatory variables was analysed using an extended multiple linear regression (MLR) approach and Classification and Regression Trees (CART).</p><p>A good calibration of event totals and outflow hydrographs could be achieved for most events and VFS treatments of the Kinston site. The calibrated d50 values yielded a wider range (2-16 µm) than the initial 16 events.</p><p>The improved d50 parameterization method derived with MLR/CART will be adopted in the next version of SWAN-VFSMOD to provide more realistic quantitative mitigation within FOCUS STEP4.</p>


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2460 ◽  
Author(s):  
Nahad Rezazadeh Helmi ◽  
Boud Verbeiren ◽  
Charlotte Wirion ◽  
Ann van Griensven ◽  
Imeshi Weerasinghe ◽  
...  

A tool called WetSpa-Urban was developed to respond to the need for precise runoff estimations in an increasingly urbanized world. WetSpa-Urban links the catchment model WetSpa-Python to the urban drainage model Storm Water Management Model (SWMM). WetSpa-Python is an open-source, fully distributed, process-based model that accurately represents surface hydrological processes but does not simulate hydraulic structures. SWMM is a well-known open-source hydrodynamic tool that calculates pipe flow processes in an accurate manner while runoff is calculated conceptually. Merging these tools along with certain modifications, such as improving the efficiency of surface runoff calculation and simulating flow at the sub-catchment level, makes WetSpa-Urban suitable for event-based and continuous rainfall–runoff modeling for urban areas. WetSpa-Urban was applied to the Watermaelbeek catchment in Brussels, Belgium, which recently experienced rapid urbanization. The model efficiency was evaluated using different statistical methods, such as Nash–Sutcliffe efficiency and model bias. In addition, a statistical investigation, independent of time, was performed by applying the box-cox transformation to the observed and simulated values of the flow peaks. By speeding up the simulation of the hydrological processes, the performance of the surface runoff calculation increased by almost 130%. The evaluation of the simulated 10 minute flow versus the observed flow at the outlet of the catchment for 2015 reached a Nash–Sutcliffe efficiency of 0.86 and a bias equal to 0.06.


2012 ◽  
Vol 16 (8) ◽  
pp. 2547-2565 ◽  
Author(s):  
G. Tang ◽  
P. J. Bartlein

Abstract. Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981–2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981–2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15%) with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH-modeled monthly soil moisture for the state of Illinois (US) agreed well (R2 = 0.79, p < 0.01) with observed data for the years 1984–2001. Overall, this study justifies both the feasibility of incorporating satellite-based land covers into a DGVM and the reliability of LH to simulate land-surface water balances. To better estimate surface/river runoff at mid-to-high latitudes, we recommended that LPJ-DGVM considers the effects of solar radiation on snowmelt.


Water Policy ◽  
2015 ◽  
Vol 18 (2) ◽  
pp. 276-287 ◽  
Author(s):  
Naveen Kumar Gupta ◽  
A. S. Jethoo ◽  
S. K. Gupta

The water resources in Rajasthan State are facing a crucial stage even after average/good rainfall. Temporal distributions as well as the spatial variability of rainfall within the state were investigated by applying an analysis of variance (ANOVA) test. The effect of change in catchment characteristics and anthropogenic activities on overland flow are also investigated in this paper by applying a regression technique. Inflow to the surface water resources of the state is regularly decreasing. Time series analysis and sequential cluster analysis reveals that 1994 was the critical year, which divides the two consecutive non-overlapping epochs viz. pre-disturbance and post-disturbance. Due to increasing population and the subsequent increase in agriculture (specifically using groundwater sources) having increased catchment interceptions, there is a regular decreasing trend of surface runoff and surface water availability. The study highlights that, in spite of an increasing trend of rainfall witnessed during the last 100 years, inflow to the surface water resources of the state is decreasing at a fast pace owing to a decrease in the percentage area contributing to surface runoff.


1997 ◽  
Vol 11 (3) ◽  
pp. 618-622 ◽  
Author(s):  
Wondi Mersie ◽  
Cathy A. Seybold

This paper describes the design, construction, and operation of tilted beds to investigate the effectiveness of vegetative filter strips (VFS) in removing agricultural chemicals from runoff water. The beds are designed to catch surface runoff, leachate, and subsurface lateral flow. Switchgrass was established on beds filled with Cullen clay loam or Emporia sandy loam. Switchgrass establi shed on Cullen clay loam beds reduced surface runoff by 60% and by 11% in sandy loam containing switchgrass compared to respective bare soils. Infiltration was 64, 26, 17, and 8% for clay loam with switchgrass, clay loam without switchgrass, sandy loam with switchgrass, and sandy loam without switchgrass, respectively.


2019 ◽  
Vol 11 (6) ◽  
pp. 1773
Author(s):  
Hong Nguyen ◽  
Gunter Meon ◽  
Van Nguyen

This paper describes an event-based water quality model for sparsely gauged catchments. The model was cultivated in a robust way to cope with practical issues, such as limited available data and error propagation. A simplified model structure and fewer input parameters are the most appealing features of this model. All model components are coupled and controlled within an Excel Spreadsheet Macro as an operational tool. Herein, the geomorphological instantaneous unit hydrograph (GIUH), the simplified process erosion and sedimentation component, the loading function, and the river routing from different existing modeling systems are adopted and linked together. Furthermore, an add-on Monte Carlo simulation tool is provided to deliver an uncertainty analysis for calibration of the output obtained from the model results. The model was successfully applied to simulate nutrient dynamics for small catchment scales during flood events in Vietnam. The success of the model application shows the ability of our model, which can adapt the model complexity to the data availability, i.e., the dominant processes in the system should be captured, whereas the minor processes may be neglected or treated in a less complex manner.


2011 ◽  
Vol 284-286 ◽  
pp. 2414-2419 ◽  
Author(s):  
Jun Cai Zhang ◽  
Cheng Chang Jia

In this paper, nano-Ti3SiC2/MoSi2 composite, whose second phase was 20-150nm, was in situ prepared by mechanical activation (MA) and SPS process with the quaternary powers of Mo, Si, Ti, and C. The results showed that: (1) matrix MoSi2 has strong repulsion to other elements, which leads to more second-phase particles inside the matrix rather than on the matrix surface; (2) matrix MoSi2 has strong restriction on the growing of the second phase, which makes the particle diameter of the second phase inside the matrix only in 200 nm around, while that over the surface reaches to 800 nm around.


2020 ◽  
Author(s):  
Alex Colyer ◽  
Adrian Butler ◽  
Denis Peach ◽  
Andrew Hughes

&lt;p&gt;The Permo-Triassic Sandstone aquifers of the Eden Valley, Cumbria UK, are a key water resource for public water supply in NW England as well as local agriculture and industries. Permo-Triassic Sandstone aquifers are characterised as having large storage capacities and moderate transmissivities, however, in the Eden Valley these characteristics vary greatly on a range of scales i.e. granulation seams (deformation bands) that are millimetres thick but have been shown to extend for hundreds of metres on analogous sandstones; silicified layers that are several metres thick and extending 10s to 100s of metres laterally; and lithological variation and faulting have been shown to juxtapose hydrogeological units with different hydraulic properties. Complex heterogeneous superficial deposits overlay 75% of the Permo-Triassic Sandstone aquifers and comprise glacial till, glacio-fluvial outwash deposits, river terrace deposits and alluvium. The lateral and vertical continuity of these superficial deposits is highly uncertain.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The complex geological and superficial deposits in the Eden Valley impose a control on flow processes and impact sub-surface runoff. Specifically, lenses of high conductivity sands and gravels within low conductivity clay till deposits coupled with the presence of low conductivity strata at ground level suggests that indirect recharge is an important sub-surface runoff component. Therefore, the magnitude and location of recharge to the Permo-Triassic Sandstone aquifers is highly uncertain. Published recharge estimates rely on baseflow separation techniques and thus do not distinguish between indirect and direct recharge. This highlights the uncertainty regarding the sub-surface flow processes active in the Eden Valley.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;A methodology for characterizing the surface water &amp;#8211; groundwater interaction spatially and temporally in an ungauged upland sub-catchment is presented.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;A non-invasive approach has been implemented to investigate the relationship between the surface water and groundwater systems in the Eden Valley. This involved the design and installation of low-cost ultrasonic sensors that measure stream stage. The sensors have been installed at key locations within sub-catchments that incorporate limestone pavements, geological contacts and along fault trends in the headwaters of the Eden Valley. Flow gauging has been conducted along the reach of these streams to investigate the spatial variation in discharge. Data from the low-cost sensors and flow gauging have been used to estimate the magnitude of volumetric water exchange between the surface water and groundwater systems, as well as characterise this relationship spatially and temporally.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The thickness and composition of the superficial deposits along these stream reaches will be investigated via passive seismic survey. The superficial investigation and the volumetric water balance will be used to estimate indirect recharge in the upper Eden catchment. The results of which will be compared to localised recharge estimates calculated from groundwater level timeseries. This comparison will indicate the importance of indirect recharge within sub-surface runoff processes.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;This ongoing research is a vital step in quantifying the relationship between the surface water and groundwater systems in a complex upland catchment. A knowledge of the active sub-surface runoff processes highlighted are key for reliably assessing the long-term security of groundwater resources in the Eden Valley.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document