Experiments on the grain size gap across gravel-sand transitions

Author(s):  
Elizabeth Dingle ◽  
Jeremy Venditti

<p>An abrupt transition in river bed grain size occurs from gravel to sand over a short downstream distance, often only a few channel widths, and is termed the gravel-sand transition. At this point, the bed structure also changes from framework- to matrix-supported. Whether the gravel-sand transition is externally imposed, a result of internal dynamics (sediment sorting, abrasion, suspension deposition) or due to some other emergent property is unclear. Interestingly, there is a general absence of rivers beds with median surface grain sizes between ~1 and 5 mm. Here we present a new global compilation of gravel-sand transition characteristics across a diverse range of settings. We identify commonalities in the location of gravel-sand transitions, finding they occur at upstream extents of externally imposed backwater effects, where the gravel supply is exhausted (i.e. downstream of mountain ranges), or where both effects are coincident. A series of laboratory channel experiments, examining changes in fluid and sediment dynamics across a gravel-sand transition, show systematic changes in near bed turbulence that control sand deposition patterns. Gravel coarser than ~10 mm prevents sand deposition at the bed surface. We also find that gravel-sand transitions cannot form where river beds contain substantial amounts of ~1 to 5 mm particles, because these grain sizes enhance the mobility of coarser gravel, preventing a shift to a sand bed.</p>

2021 ◽  
Author(s):  
Elizabeth Dingle ◽  
Jeremy Venditti

<p>An abrupt transition in river bed grain size occurs from gravel to sand over a short downstream distance, often only a few channel widths, and is termed the gravel-sand transition (GST). At this point, the bed structure also changes from framework- to matrix-supported. Whether the GST is externally imposed, a result of internal dynamics (sediment sorting, abrasion, suspension deposition) or due to some other emergent property is unclear. There is also a general absence of rivers beds with median surface grain sizes between ~1 and 5 mm, often referred to as the grain size gap. Here we present two sets of new laboratory experiments, examining changes in fluid and sediment dynamics across the GST. In the first set, we created stable GSTs with a 10 mm gravel and 0.5 mm sand that show GST formation is consistent with  previous theory suggesting that at shear velocities of ~0.1 m/s, sand particles rapidly fall out of suspension as a result of a particle Reynolds number dependency (i.e. a viscous effect). In a second set of experiments, we explored the fate of grain size gap material. We formed a gravel wedge composed of ~2 to 5 mm sediment, then fed 0.5 mm sand.  Our observations indicate that where sand rapidly starts to fall out of suspension, the gravel bed becomes inherently unstable. Gravel is transported downstream until the grain size gap material is largely exhausted from the system (e.g. buried under sand or rafted out of the flume). This occurs because sand sized particles fill or bridge interstitial pockets in the fine gravel bed surface, generating fluid acceleration in the near-bed region (i.e. a geometric effect specific to these grain sizes). As such, particles in the grain size gap do not form the dominant mode in river bed sediments. </p>


2014 ◽  
Vol 37 ◽  
pp. 27-39 ◽  
Author(s):  
L. Guerit ◽  
L. Barrier ◽  
C. Narteau ◽  
F. Métivier ◽  
Y. Liu ◽  
...  

Abstract. In gravel-bed rivers, sediments are often sorted into patches of different grain-sizes, but in braided streams, the link between this sorting and the channel morpho-sedimentary elements is still unclear. In this study, the size of the bed sediment in the shallow braided gravel-bed Urumqi River is characterized by surface-count and volumetric sampling methods. Three morpho-sedimentary elements are identified in the active threads of the river: chutes at flow constrictions, which pass downstream to anabranches and bars at flow expansions. The surface and surface-layer grain-size distributions of these three elements show that they correspond to only two kinds of grain-size patches: (1) coarse-grained chutes, coarser than the bulk river bed, and (2) finer-grained anabranches and bars, consistent with the bulk river bed. In cross-section, the chute patches are composed of one coarse-grained top layer, which can be interpreted as a local armour layer overlying finer deposits. In contrast, the grain size of the bar-anabranch patches is finer and much more homogeneous in depth than the chute patches. Those patches, which are features of lateral and vertical sorting associated to the transport dynamics that build braided patterns, may be typical of active threads in shallow gravel-bed rivers and should be considered in future works on sorting processes and their geomorphologic and stratigraphic results.


Author(s):  
Yasuhito NOSHI ◽  
Akio KOBAYASHI ◽  
Takaaki UDA ◽  
Masumi SERIZAWA ◽  
Takayuki KUMADA
Keyword(s):  

2013 ◽  
Vol 347-350 ◽  
pp. 1171-1175 ◽  
Author(s):  
Bin Wang ◽  
Hong Mei Hu ◽  
Cui Zhou

The transverse properties were inferior to the longitudinal properties for the existence of banded structure in 20G steel. In order to eliminate the banded structure and improve the transverse performance of 20G steel, different heat treatment processes were adopted. The results showed that conventional normalizing could reduce the banded structure and refine the grain sizes. When 20G was heated with 10°C/min heating rated and then held at 920°C for 2h, the banded structure in the steel was almost eliminated and the microstructure was homogeneous with fine grain size, the strength increased by 14%. The non-metallic inclusion and carbide in the microstructure leaded to stress concentration and separation with the base metal. To some extent, heat treatment can improve the distribution and form of non-metallic inclusions.


2010 ◽  
Vol 63 ◽  
pp. 420-424
Author(s):  
Riva Rivas-Marquez ◽  
Carlos Gomez-Yanez ◽  
Ivan Velasco-Davalos ◽  
Jesus Cruz-Rivera

Using Mechanical Activation it is possible to obtain small grain size and good homogeneity in a ceramic piece. For ZnO varistor devices Mechanical Activation appears to be a good fabrication technique, since good homogeneity and small grain sizes are advantageous microstructural features. The typical formulation is composed by ZnO, Bi2O3, Sb2O3, CoO, MnO2 and Cr2O3 as raw materials, and during sintering, several dissolutions and reactions to form pyrochlore and spinel phases occur. When Mechanical Activation is applied to the entire formulation, it is difficult to know what processes are being mechanically activated due to the complexity of the system. The aim of the present work was to clarify how the mechanical activation is taking place in a typical ZnO varistor formulation. The methodology consisted in the formation of all possible combinations of two out of the five oxides above mentioned and to apply mechanical activation on the mixture of each pair of powders. The results showed that systems containing Bi2O3 are prone to react during mechanical activation. Also, reduction reactions were observed in MnO2. In addition, the powder mixture corresponding to the whole formulation was milled in a planetary mill, pressed and sintered, and varistor devices were fabricated. Improvement in the nonlinearity coefficient and breakdown voltage was observed.


2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


2008 ◽  
Vol 1122 ◽  
Author(s):  
Gianguido Baldinozzi ◽  
David Simeone ◽  
Dominique Gosset ◽  
Mickael Dollé ◽  
Georgette Petot-Ervas

AbstractWe have synthesized Gd-doped ceria polycrystalline samples (5, 10, 15 %mol), having relative densities exceeding 95% and grain sizes between 30 and 160 nm after axial hot pressing (750 °C, 250 MPa). The samples were prepared by sintering nanopowders obtained by sol-gel chemistry methods having a very narrow size distribution centered at about 16 nm. SEM and X-ray diffraction were performed to characterize the sample microstructures and to assess their structures. We report ionic conductivity measurements using impedance spectroscopy. It is important to investigate the properties of these systems with sub-micrometric grains and as a function of their composition. Therefore, samples having micrometric and nanometric grain sizes (and different Gd content) were studied. Evidence of Gd segregation near the grain boundaries is given and the impact on the ionic conductivity, as a function of the grain size and Gd composition, is discussed and compared to microcrystalline samples.


2018 ◽  
Vol 615 ◽  
pp. A20 ◽  
Author(s):  
Wasim Iqbal ◽  
Valentine Wakelam

Context. Species abundances in the interstellar medium (ISM) strongly depend on the chemistry occurring at the surfaces of the dust grains. To describe the complexity of the chemistry, various numerical models have been constructed. In most of these models, the grains are described by a single size of 0.1 μm. Aims. We study the impact on the abundances of many species observed in the cold cores by considering several grain sizes in the Nautilus multi-grain model. Methods. We used grain sizes with radii in the range of 0.005 μm to 0.25 μm. We sampled this range in many bins. We used the previously published, MRN and WD grain size distributions to calculate the number density of grains in each bin. Other parameters such as the grain surface temperature or the cosmic-ray-induced desorption rates also vary with grain sizes. Results. We present the abundances of various molecules in the gas phase and also on the dust surface at different time intervals during the simulation. We present a comparative study of results obtained using the single grain and the multi-grain models. We also compare our results with the observed abundances in TMC-1 and L134N clouds. Conclusions. We show that the grain size, the grain size dependent surface temperature and the peak surface temperature induced by cosmic ray collisions, play key roles in determining the ice and the gas phase abundances of various molecules. We also show that the differences between the MRN and the WD models are crucial for better fitting the observed abundances in different regions in the ISM. We show that the small grains play a very important role in the enrichment of the gas phase with the species which are mainly formed on the grain surface, as non-thermal desorption induced by collisions of cosmic ray particles is very efficient on the small grains.


Sign in / Sign up

Export Citation Format

Share Document