Positive feedback from climate warming to carbon sequestration in boreal forests

Author(s):  
Pekka Kauppi ◽  
Tomas Lundmark ◽  
Annika Nordin

<p>EGU Abstract, 3-8 May, Vienna 2020<br>Session BG3.19 <br>Climate change and adaptive forest management: Effects, Methods, and Objectives</p><p>Positive feedback from climate warming to carbon sequestration in boreal forests<br>Pekka Kauppi1,2, Tomas Lundmark2 and Annika Nordin2<br>1University of Helsinki, Department of Forest Sciences, POBOX 27, Fin-00014 University of Helsinki, Finland<br>2 Swedish University of Agricultural Sciences, Dpt Forest Ecology and Management, 90183 Umeå, Sweden<br>[email protected]<br>[email protected]<br>[email protected]</p><p>'Wovon man nicht sprechen kann, darüber muß man schweigen.' (“Whereof one cannot speak, thereof one must be silent.”). This quote of Ludwig Wittgenstein is thought-provoking regarding beneficial effects of climate change. Logically, climate warming must provoke favorable environmental effects in some regions and over certain periods of time despite the prospects of dramatic detrimental effects of global warming on the environment in the long term. Our focus is on boreal forests in recent past.<br>Devastating effects of climate warming on terrestrial ecosystems have been recorded in many parts of the world. Heat waves have enhanced wildfires. In Australia alone, wildfires disturbed more than six million hectares of land in 2019-2020. Will climate warming undermine the contribution of land use management to climate change mitigation? - Most surprisingly, we report here a reverse relationship from north Europe. Climate warming has amplified the favorable impacts of land management on carbon sequestration. This is a forest-climate paradox, maybe temporary and anecdotal but persistent and firmly documented in Finland, Norway and Sweden since 1990.<br>Springtime is the most interesting season for forest biota in north Europe. During spring in north Europe, soil is rich in moisture from the snow melt. Days are long as of the beginning of April. Cloudy weather is unusual in the springtime. When spring comes early, there is plenty of solar radiation and water available for photosynthesis and growth. Warm spring evokes an early bud burst. Conversely, cold spring delays the onset of the growing season. April and May temperatures were exceptionally high during the period 1990-2013 (Figs. 1a and 1b) . Similar patterns of climate warming were observed in Norway and Sweden.<br> <br> <br>Figure 1a. Average temperature in Finland in April during 1847-2013 (degrees centigrade).<br> <br> <br>Figure 1b. Average temperature in Finland in May during 1847-2013 (degrees centigrade).<br>Especially during 1990-2019 the growing seasons in north Europe turned out to be long. The Net Primary Production and forest carbon sink improved. Forest increment in north Europe approximately doubled from 1970 to 2010 responding to multiple drivers . A combination of successful forest management and environmental change created an interesting paradox promoting forest ecosystem services. Carbon sink improved concomitantly with increasing harvests for the forest industries, an important economic sector in the region.<br>In so far, climate warming specifically in north Europe has contributed significantly to the evolution and persistence of the carbon sink and to fossil fuel substitution. Future research is needed to monitor this feedback from climate warming to carbon sequestration.</p><p> </p>

2015 ◽  
Vol 45 (2) ◽  
pp. 195-206 ◽  
Author(s):  
Ryan M. Bright ◽  
Clara Antón-Fernández ◽  
Rasmus Astrup ◽  
Anders H. Strømman

Managing boreal forests for effective climate change mitigation requires comprehension of the full spectrum of climate regulation services that they provide, which includes both the storage of carbon and exchanges of heat and moisture with the atmosphere. It is increasingly recognized that surface albedo is the most important biogeophysical mechanism by which the boreal forest directly influences the global energy balance. Forest management decisions that influence age class and species distributions affect not only the carbon sink capacity, but also the albedo (and hence climate services) of the forested landscape. Disregarding albedo and how it is influenced by management decisions can have profound implications for the effectiveness of any climate change mitigation policy involving active forest management. Here, we explore, analyze, and compare the albedo predicted by simple empirical models with in situ and remotely sensed albedo observations in regions outside the region in which the models were originally developed (southeastern Norway), including boreal Canada and Europe. We find that the models are robust in their ability to predict the longer term interannual trends in the mean winter–summer albedo amplitude, the rapid albedo evolution in young stands, and the timing of seasonal transitions and weak with respect to capturing interannual albedo changes linked to seasonal climate variability and phenology.


2006 ◽  
Vol 36 (9) ◽  
pp. 2223-2234 ◽  
Author(s):  
Mark Boyland

Changes in forest-management practices have the potential to increase forest land carbon storage, which would help to reduce CO2 concentrations in the atmosphere linked to climate change and contribute to Kyoto Protocol targets for signatory countries. However, successfully increasing carbon storage while maintaining economic profitability is challenging because of the long planning horizons required for many forest activities and slow carbon sequestration rates in northern forests. The literature on the economics of forest management for carbon storage is unfortunately sparse and, in many instances, confused and misleading. Three carbon valuation equations are widely used that give contradictory results, with two of them (flow summation and average storage) ignoring the time-value carbon benefits and other essential data. Only the discounted carbon equation gives reasonably interpretable economic results. As well, many studies have omitted essential economic gradients that result in structurally questionable results. I review the literature, highlighting deficiencies in equations and how analyses are structured with the intent to produce a reasonable method of interpreting previous work and advice for future studies.


Jurnal Dampak ◽  
2013 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Dwi Pujiastuti

ABSTRAK Telah dilakukan perhitungan radiative forcing gas Metana (CH4) menggunakan konsentrasi (CH4) dari tahun 2004 2009 di Kototabang dengan menggunakan metode Intergovernmental on Panel Climate Change (IPCC). Hasil perhitungan kemudian dikorelasikan dengan selisih temperatur yang merupakan data bulanan temperatur permukaan Kototabang dikurangi dengan temperatur rata-rata selama 6 tahun pengukuran. Temperatur permukaan diukur dengan menggunakan instrumen Automatic Weather station (AWS) yang ada di stasiun GAW Kototabang. Dari hasil analisi diperoleh nilai radiatve forcing mengalami peningkatan dari 0,24338 Wm-2pada tahun 2004 menjadi 0,246221 Wm-2 pada tahun 2009. Hal ini menunjukkan lebih banyak energi radiasi matahari yang diserap daripada yang diemisikan (Positive feedback). Tetapi hasil korelasi radiative forcing CH4 dengan selisih temperatur memiliki koefisien determinasi yang rendah yaitu 0,0047. Hal ini karena perubahan temperatur di Kototabang yang tercatat di AWS bukan hanya dipengaruhi oleh nilai konsentrasi metana saja tapi juga oleh aerosol, awan, dan gas rumah kaca lainnya. Hal juga ini menunjukkan bahwa konsentrasi gas metana tidak signifikan mempengaruhi perubahan temperatur di Kototabang. Kata kunci: Kototabang, metana, radiative forcing, temperaturABSTRACTRadiative forcing of methane (CH4) gas has been calculated based on its concentration in Kototabang from 2004 to 2009, by using Intergovernmental on Panel Climate Change (IPCC) method. The calculation results were further correlated to the temperature differences, i.e., monthly surface temperature subtracted by the average temperature data at Kototabang during the six year of measurement. The surface temperature was measured by using Automatic Weather Station (AWS) installed at the Global Atmospheric Watch (GAW) Kototabang. Based on the analysis, there was an increment of the radiative forcing from 0.24338Wm-2 in 2004 to 0.246221Wm-2 in 2009. This showed the solar energy was more absorbed than emitted (positive feedback). However, the result of correlation analysis between CH4 radiative forcing and the temperature difference shows a low determinant coefficient, i.e., 0.0047. This is due to the measured temperature change in Kototabang is not only affected by methane concentrations but also influenced by aerosol, clouds and other green house gases. This also shows that methane gas concentration did not significantly influence the temperature change in Kototabang.Keywords: Kototabang, methane, radiative forcing, temperature


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1176
Author(s):  
Ahmed Laamrani ◽  
Osvaldo Valeria ◽  
Abdelghani Chehbouni ◽  
Yves Bergeron

Northern boreal forests are characterized by accumulation of accumulation of peat (e.g., known as paludification). The functioning of northern boreal forest species and their capacity to adapt to environmental changes appear to depend on soil conditions. Climate warming is expected to have particularly pronounced effects on paludified boreal ecosystems and can alter current forest species composition and adaptation by changing soil conditions such as moisture, temperature regimes, and soil respiration. In this paper, we review and synthesize results from various reported studies (i.e., 88 research articles cited hereafter) to assess the effects of climatic warming on soil conditions of paludified forests in North America. Predictions that global warming may increase the decomposition rate must be considered in combination with its impact on soil moisture, which appears to be a limiting factor. Local adaptation or acclimation to current climatic conditions is occurring in boreal forests, which is likely to be important for continued ecosystem stability in the context of climate change. The most commonly cited response of boreal forest species to global warming is a northward migration that tracks the climate and soil conditions (e.g., temperature and moisture) to which they are adapted. Yet, some constraints may influence this kind of adaptation, such as water availability, changes in fire regimes, decomposer adaptations, and the dynamic of peat accumulation. In this paper, as a study case, we examined an example of potential effects of climatic warming on future paludification changes in the eastern lowland region of Canada through three different combined hypothetical scenarios based on temperature and precipitation (e.g., unchanged, increase, or decrease). An increase scenario in precipitation will likely favor peat accumulation in boreal forest stands prone to paludification and facilitate forested peatland expansion into upland forest, while decreased or unchanged precipitation combined with an increase in temperature will probably favor succession of forested peatlands to upland boreal forests. Each of the three scenarios were discussed in this study, and consequent silvicultural treatment options were suggested for each scenario to cope with anticipated soil and species changes in the boreal forests. We concluded that, despite the fact boreal soils will not constrain adaptation of boreal forests, some consequences of climatic warming may reduce the ability of certain species to respond to natural disturbances such as pest and disease outbreaks, and extreme weather events.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
A. Paige Fischer ◽  
Susan Charnley

Nonindustrial private—or “family”—forests hold great potential for sequestering carbon and have received much attention in discussions about forestry-based climate change mitigation. However, little is known about social and cultural influences on owners' willingness to manage for carbon and respond to policies designed to encourage carbon-oriented management. We review the published literature to examine how family forest owners' values, ecological knowledge, risk perceptions, and forest management and policy preferences may affect their interest in managing for carbon sequestration. We find that although family forest owners may not be particularly motivated to mitigate climate change, their forest management values and practices compliment many carbon-oriented management strategies. However, the strong value owners place on privacy and autonomy, and the weak importance many place on financial reward, may inhibit participation in policies and programs that incentivize carbon-oriented management. These findings also have implications for policy efforts to encourage management for other ecological values besides carbon sequestration on family forestlands.


2017 ◽  
Vol 26 (2) ◽  
pp. eR04S ◽  
Author(s):  
Ricardo Ruiz-Peinado ◽  
Andrés Bravo-Oviedo ◽  
Eduardo López-Senespleda ◽  
Felipe Bravo ◽  
Miren Del Rio

Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area.Material and methods: We review the main effects of forest management by comparing the effects of silvicultural systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area.Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change.Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change


2018 ◽  
Vol 10 (10) ◽  
pp. 3531 ◽  
Author(s):  
Xu Luo ◽  
Hong He ◽  
Yu Liang ◽  
Jacob Fraser ◽  
Jialin Li

The ecological resilience of boreal forests is an important element of measuring forest ecosystem capacity recovered from a disturbance, and is sensitive to broad-scale factors (e.g., climate change, fire disturbance and human related impacts). Therefore, quantifying the effects of these factors is increasingly important for forest ecosystem management. In this study, we investigated the impacts of climate change, climate-induced fire regimes, and forest management schemes on forest ecological resilience using a forest landscape model in the boreal forests of the Great Xing’an Mountains, Northeastern China. First, we simulated the effects of the three studied variables on forest aboveground biomass, growing space occupied, age cohort structure, and the proportion of mid and late-seral species indicators by using the LANDIS PRO model. Second, we calculated ecological resilience based on these four selected indicators. We designed five simulated scenarios: Current fire only scenario, increased fire occurrence only scenario, climate change only scenario, climate-induced fire regime scenario, and climate-fire-management scenario. We analyzed ecological resilience over the five scenarios from 2000 to 2300. The results indicated that the initialized stand density and basal area information from the year 2000 adequately represented the real forest landscape of that year, and no significant difference was found between the simulated landscape of year 2010 and the forest inventory data of that year at the landscape scale. The simulated fire disturbance results were consistent with field inventory data in burned areas. Compared to the current fire regime scenario, forests where fire occurrence increased by 30% had an increase in ecological resilience of 12.4–43.2% at the landscape scale, whereas increasing fire occurrence by 200% would decrease the ecological resilience by 2.5–34.3% in all simulated periods. Under the low climate-induced fire regime scenario, the ecological resilience was 12.3–26.7% higher than that in the reference scenario across all simulated periods. Under the high climate-induced fire regime scenario, the ecological resilience decreased significantly by 30.3% and 53.1% in the short- and medium-terms at landscape scale, while increasing slightly by 3.8% in the long-term period compared to the reference scenario. Compared to no forest management scenario, ecological resilience was decreased by 5.8–32.4% under all harvesting and planting strategies for the low climate-induced fire regime scenario, and only the medium and high planting intensity scenarios visibly increased the ecological resilience (1.7–15.8%) under the high climate-induced fire regime scenario at the landscape scale. Results from our research provided insight into the future forest management and have implications for improving boreal forest sustainability.


2021 ◽  
Vol 10 (1) ◽  
pp. 96-99
Author(s):  
Dr Astrid Reischl ◽  
Enno Uhl

Carbon smart forestry under climate change In the fight against climate change, forestry needs to contribute to carbon sink and a low carbon-emitting society. Forests sequester carbon and simultaneously release carbon during forest operations. Our ambition is to achieve an integrated picture of carbon sink and source; to adapt forest management for different climate and management regimes. CARE4C strives to develop carbon-smart forest management systems for adaptation and mitigation in view of climate change. The CARE4C Project runs from January 2018 to December 2022.


2011 ◽  
Vol 16 (Special_Issue) ◽  
pp. 107-120 ◽  
Author(s):  
Raisa Makipaa ◽  
Tapio Linkosalo ◽  
Sami Niinimaki ◽  
Alexander Komarov ◽  
Sergey Bykhovets ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document