Evolution of the Aure-Moresby Foreland FTB (Papua New Guinea): Constraints from balanced crustal scale cross-section and forward modeling.

Author(s):  
charlie kergaravat ◽  
jean-claude ringenbach ◽  
Jaume Verges

<p>The New Guinea Orogen evolved by the accretion of volcanic arcs onto the northern Australian margin during the Cenozoic arc-continent collision. Since that time, the northern Australian margin has undergone oblique convergence with Pacific plate involving volcanic arcs and intra-oceanic basin in between. The resulting FTBs are the Papuan FTB, the Mobile Belt and the Aure-Moresby FTB belonging to the curved shape New Guinea Highlands.</p><p>Previous regional structural studies were focus to the Central Papuan FTB. Concerning the Aure-Moresby FTB, few studies based mainly on field work describe a highly deformed Neogene underfilled foreland basin with mixed carbonate-siliciclastic deposits. One regional cross-section through the onshore Aure-Moresby FTB is proposed by Kugler during his PhD in 1967. In this regard, some lack of consistency about the regional structural style can be highlighted such as the different timing and amount of shortening between the Papuan and Aure-Moresby FTBs and the large N-S positive flower structure to explain the uplift of the Aure FTB.</p><p>The main goals of this study on the Aure-Moresby Foreland FTB are: (i) to discuss the impact of the mechanical stratigraphy on structural style, (ii) to estimate the significance of basement involvement and its morphology, (iii) to determine the shortening by comparing the regional balanced and restored cross sections, (iv) to estimate the relative ages of tectonic deformation and to propose a 2D kinematic model illustrating the evolution of the orogenic system since the Late Cretaceous.</p><p>For this purpose, 2D seismic profiles, chronostratigraphic synthesis, remote sensing mapping, wells and gravimetric data have been integrated in order to construct a consistent structural evolutionary model of the Aure FTB. This study is mainly focused on the interpretation of NE-SW trending 2D seismic lines in Move software to build a balanced cross-section from the hinterland to the foreland Aure foredeep.</p><p>This study shows that the Aure-Moresby FTB structure is the result of thin-skinned deformation along Late Cretaceous, Miocene and Pliocene detachment levels affected by recent thick-skinned deformation. The section is characterized by multiple fault-propagation folds detached at various level within the Mesozoic and Cenozoic. In the central Aure FTB, two main structural steps show major uplifts that correspond to the wide Dude Anticlinorium and the Kapau Margin interpreted as crustal scale thrusting rooted at the brittle/ductile transition and connected with the Cretaceous décollement level. Crustal scale deformation seems to be transmitted into Mesozoic and Cenozoic decollements and disharmonic levels forming the frontal folded zone. In the frontal Aure FTB, Miocene carbonate may be involved in the deformation forming potentially Pleistocene structural traps. Based on flexural slip restoration technique, 28 km of shortening have been calculated within the sedimentary cover along 250 km that correspond to a ratio of 11,2 %.</p>

2020 ◽  
Author(s):  
Matthieu Branellec ◽  
Nuria Carrera ◽  
Josep Anton Munoz ◽  
Jean-Claude Ringenbach ◽  
Jean-Paul Callot

<p>The Central Andes (12°S-36°S) stretches over more than 2400km. They are characterized by strong longitudinal and latitudinal segmentation (Sierra Pampeanas, Precordillera, Cordillera Frontal, Cordillera Principal from east to west), each domain having distinctive basement involvement and showing different structural styles. The Argentinian Precordillera, located at 30°S, has long been interpreted as a thin-skinned wedge detached below into the lower part of Paleozoic succession. It makes up a typical Coulomb foreland thrust belt system. However, the impact of the Paleozoic inheritance derived from the various orogenic stages on the current structural style has been overlooked. The Chanic structures that developed in Silurian / Devonian times have been reactivated by the Andean deformation that took place from Oligocene to Plio-Pleistocene times. The current structure of the Precordillera has been the subject of numerous studies in the last decades. Thanks to compilation of this literature and fieldwork, we present a new cross-section considering these 2 superimposed events. This cross-section can be divided into 2 different zones depending on the dominant structures. The western Precordillera involves an Ordovician succession characterized by Chanic superimposed folding phases with cleavage development. On the contrary, in the eastern part, most of the observed structures were developed during Andean orogeny. The structural style is characterized by thrusts faults and penetrative deformation is absent. The Sierras Pampeanas in the East are a Miocene thick-skinned system that makes up a typical broken foreland system. The association of both systems of Precordillera and Sierras Pampeanas delineate an inheritance-controlled original orogenic thin-skinned system that turns to the east into a broad thick-skinned system involving up to Precambrian rocks.</p>


2018 ◽  
Vol 9 (3) ◽  
pp. 855-888 ◽  
Author(s):  
A. V. Parfeevets ◽  
V. A. Sankov

The knowledge of the neotectonic structures inSoutheastern Mongolia, that is considerably distant from the active plate boundaries, is important for determining a source of tectonic deformation and regular features of activation in the intracontinental setting. Our research was focused on the East Gobi and South Gobi depressions located inSoutheastern Mongolia, which developed since the Mesozoic and were activated to various degrees in the neotectonic stage. The study aimed to assess the paleostress state of the crust inSoutheastern Mongolia, identify the stages, factors and mechanisms of the Cenozoic activation of the regional structures of different strike, and determine the sources of activation. The analysis of the available literature suggests a similar history of their development in the Late Jurassic – Early Cretaceous (rifting) and Late Cretaceous – Paleogene (tectonic quiescence). In the Cenozoic stage, the depressions experienced activation of completely different styles. In theEast Gobidepression, left-lateral strike-slip faults were activated in the Tertiary, and the post-Late Cretaceous thrusting took place along the northeastern faults on the northern slope of the Totoshan uplift. In the Early Cenozoic, the N-S and N-W compression was dominant as evidenced by the deformed Late Cretaceous sediments and the reconstructed stress tensors typical of the compression and transpression regimes. An overview of the published data suggests that the most probable cause of such deformation was the impact of the Western Pacific zone of plate interaction. However, a potential influence of compression at the early stages of the Indo-Asian collision cannot be completely excluded. TheEast Gobidepression was low active in the second half of the Cenozoic. In contrast to the East Gobi depression, theSouth Gobiactivation began in the Late Cenozoic (Late Miocene – Early Pliocene). Young uplifts and forbergs (Gobi Altai eastern termination) developed actively and ‘cut’ the sediments of the basins originating from the Mesozoic. The W-E and N-W strike-slip and thrust faults were active in the Pliocene–Quaternary. The stress field reconstructions show compression, transpression and strike-slip regimes with the NE-trending axis of compression. Deformation in the East Goby Altay (as well as in Western andSouthwestern Mongolia) is driven by the India-Eurasia collision.


2017 ◽  
Vol 67 (3) ◽  
pp. 393-403 ◽  
Author(s):  
Daniel Madzia ◽  
Marcin Machalski

AbstractBrachauchenine pliosaurids were a cosmopolitan clade of macropredatory plesiosaurs that are considered to represent the only pliosaurid lineage that survived the faunal turnover of marine amniotes during the Jurassic- Cretaceous transition. However, the European record of the Early to early Late Cretaceous brachauchenines is largely limited to isolated tooth crowns, most of which have been attributed to the classic Cretaceous taxon Polyptychodon. Nevertheless, the original material of P. interruptus, the type species of Polyptychodon, was recently reappraised and found undiagnostic. Here, we describe a collection of twelve pliosaurid teeth from the upper Albian-middle Cenomanian interval of the condensed, phosphorite-bearing Cretaceous succession at Annopol, Poland. Eleven of the studied tooth crowns, from the Albian and Cenomanian strata, fall within the range of the morphological variability observed in the original material of P. interruptus from the Cretaceous of England. One tooth crown from the middle Cenomanian is characterized by a gently subtrihedral cross-section. Similar morphology has so far been described only for pliosaurid teeth from the Late Jurassic and Early Cretaceous. Even though it remains impossible to precisely settle the taxonomic distinctions, the studied material is considered to be taxonomically heterogeneous.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Claude Duhr ◽  
Falko Dulat ◽  
Bernhard Mistlberger

Abstract We present the production cross section for a lepton-neutrino pair at the Large Hadron Collider computed at next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory. We compute the partonic coefficient functions of a virtual W± boson at this order. We then use these analytic functions to study the progression of the perturbative series in different observables. In particular, we investigate the impact of the newly obtained corrections on the inclusive production cross section of W± bosons, as well as on the ratios of the production cross sections for W+, W− and/or a virtual photon. Finally, we present N3LO predictions for the charge asymmetry at the LHC.


2021 ◽  
Vol 13 (10) ◽  
pp. 5494
Author(s):  
Lucie Kucíková ◽  
Michal Šejnoha ◽  
Tomáš Janda ◽  
Jan Sýkora ◽  
Pavel Padevět ◽  
...  

Heating wood to high temperature changes either temporarily or permanently its physical properties. This issue is addressed in the present contribution by examining the effect of high temperature on residual mechanical properties of spruce wood, grounding on the results of full-scale fire tests performed on GLT beams. Given these tests, a computational model was developed to provide through-thickness temperature profiles allowing for the estimation of a charring depth on the one hand and on the other hand assigning a particular temperature to each specimen used subsequently in small-scale tensile tests. The measured Young’s moduli and tensile strengths were accompanied by the results from three-point bending test carried out on two groups of beams exposed to fire of a variable duration and differing in the width of the cross-section, b=100 mm (Group 1) and b=160 mm (Group 2). As expected, increasing the fire duration and reducing the initial beam cross-section reduces the residual bending strength. A negative impact of high temperature on residual strength has also been observed from simple tensile tests, although limited to a very narrow layer adjacent to the charring front not even exceeding a typically adopted value of the zero-strength layer d0=7 mm. On the contrary, the impact on stiffness is relatively mild supporting the thermal recovery property of wood.


2019 ◽  
Vol 752 ◽  
pp. 81-112 ◽  
Author(s):  
Luke Mahoney ◽  
Sandra McLaren ◽  
Kevin Hill ◽  
Barry Kohn ◽  
Kerry Gallagher ◽  
...  

Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1127-1130 ◽  
Author(s):  
Gabriel G. Meyer ◽  
Nicolas Brantut ◽  
Thomas M. Mitchell ◽  
Philip G. Meredith

Abstract The so-called “brittle-ductile transition” is thought to be the strongest part of the lithosphere, and defines the lower limit of the seismogenic zone. It is characterized not only by a transition from localized to distributed (ductile) deformation, but also by a gradual change in microscale deformation mechanism, from microcracking to crystal plasticity. These two transitions can occur separately under different conditions. The threshold conditions bounding the transitions are expected to control how deformation is partitioned between localized fault slip and bulk ductile deformation. Here, we report results from triaxial deformation experiments on pre-faulted cores of Carrara marble over a range of confining pressures, and determine the relative partitioning of the total deformation between bulk strain and on-fault slip. We find that the transition initiates when fault strength (σf) exceeds the yield stress (σy) of the bulk rock, and terminates when it exceeds its ductile flow stress (σflow). In this domain, yield in the bulk rock occurs first, and fault slip is reactivated as a result of bulk strain hardening. The contribution of fault slip to the total deformation is proportional to the ratio (σf − σy)/(σflow − σy). We propose an updated crustal strength profile extending the localized-ductile transition toward shallower regions where the strength of the crust would be limited by fault friction, but significant proportions of tectonic deformation could be accommodated simultaneously by distributed ductile flow.


1988 ◽  
Vol 40-41 ◽  
pp. 786-787
Author(s):  
Baozhu Luo ◽  
Jiaqi Yu ◽  
Guozhu Zhong
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Andrius Slavickas ◽  
Raimondas Pabarčius ◽  
Aurimas Tonkūnas ◽  
Gediminas Stankūnas

The decomposition analysis of void reactivity coefficient for innovative BWR assemblies is presented in this paper. The innovative assemblies were loaded with high enrichment UO2and MOX fuels. Additionally the impact of the moderation enhancement on the void reactivity coefficient through a full fuel burnup discharge interval was investigated for the innovative assembly with MOX fuel. For the numerical analysis the TRITON functional module of SCALE code with ENDF/B-VI cross section library was applied. The obtained results indicate the influence of the most important isotopes to the void reactivity behaviour over a fuel burnup interval of 70 GWd/t for both UO2and MOX fuels. From the neutronic safety concern positive void reactivity coefficient values are observed for MOX fuel at the beginning of the fuel irradiation cycle. For extra-moderated assembly designs, implementing 8 and 12 water holes, the neutron spectrum softening is achieved and consequently the lower void reactivity values. Variations in void reactivity coefficient values are explained by fulfilled decomposition analysis based on neutrons absorption reactions for separate isotopes.


2011 ◽  
Vol 5 (8) ◽  
pp. e1286 ◽  
Author(s):  
Oriol Mitjà ◽  
Raymond Paru ◽  
Russell Hays ◽  
Lysaght Griffin ◽  
Nedley Laban ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document